Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 27(12): 2733-46, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20576761

ABSTRACT

Myxozoans are a diverse group of microscopic endoparasites that have been the focus of much controversy regarding their phylogenetic position. Two dramatically different hypotheses have been put forward regarding the placement of Myxozoa within Metazoa. One hypothesis, supported by ribosomal DNA (rDNA) data, place Myxozoa as a sister taxon to Bilateria. The alternative hypothesis, supported by phylogenomic data and morphology, place Myxozoa within Cnidaria. Here, we investigate these conflicting hypotheses and explore the effects of missing data, model choice, and inference methods, all of which can have an effect in placing highly divergent taxa. In addition, we identify subsets of the data that most influence the placement of Myxozoa and explore their effects by removing them from the data sets. Assembling the largest taxonomic sampling of myxozoans and cnidarians to date, with a comprehensive sampling of other metazoans for 18S and 28S nuclear rDNA sequences, we recover a well-supported placement of Myxozoa as an early diverging clade of Bilateria. By conducting parametric bootstrapping, we find that the bilaterian placement of Buddenbrockia could not alone be explained by long-branch attraction. After trimming a published phylogenomic data set, to circumvent problems of missing data, we recover the myxozoan Buddenbrockia plumatellae as a medusozoan cnidarian. In further explorations of these data sets, we find that removal of just a few identified sites under a maximum likelihood criterion employing the Whelan and Goldman amino acid substitution model changes the placement of Buddenbrockia from within Cnidaria to the alternative hypothesis at the base of Bilateria. Under a Bayesian criterion employing the CAT model, the cnidarian placement is more resilient to data removal, but under one test, a well-supported early diverging bilaterian position for Buddenbrockia is recovered. Our results confirm the existence of two relatively stable placements for myxozoans and demonstrate that conflicting signal exists not only between the two types of data but also within the phylogenomic data set. These analyses underscore the importance of careful model selection, taxon and data sampling, and in-depth data exploration when investigating the phylogenetic placement of highly divergent taxa.


Subject(s)
Databases, Genetic , Myxozoa/classification , Phylogeny , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Animals , Base Sequence , Cnidaria/classification , Cnidaria/genetics , DNA, Ribosomal/genetics , Myxozoa/genetics , Ribosomes/genetics
2.
BMC Evol Biol ; 9: 165, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19604374

ABSTRACT

Correction to Evans, N.M., Lindner, A., Raikova, E.V., Collins, A.G. and Cartwright, P. Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the phylum Cnidaria. BMC Evol Biol, 2008, 8:139.


Subject(s)
Cnidaria/genetics , Phylogeny , Animals , Cnidaria/classification , DNA, Ribosomal/genetics , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics
3.
BMC Evol Biol ; 8: 139, 2008 05 09.
Article in English | MEDLINE | ID: mdl-18471296

ABSTRACT

BACKGROUND: Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction (LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. RESULTS: Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. CONCLUSION: By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium should be placed in its own cnidarian class, Polypodiozoa.


Subject(s)
Hydrozoa/classification , Phylogeny , Animals , Cnidaria/classification , Cnidaria/genetics , DNA, Ribosomal/genetics , Hydrozoa/genetics , Hydrozoa/growth & development , Life Cycle Stages , RNA, Ribosomal, 18S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...