Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(13): 9326-9334, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38529806

ABSTRACT

Recognition-encoded melamine oligomers (REMO) are synthetic polymers that feature an alternating 1,3,5-triazine-piperazine backbone and side-chains equipped with either a phenol or phosphine oxide recognition unit. An automated method for the solid-phase synthesis (SPS) of REMO of any specified sequence has been developed starting from dichlorotriazine monomer building blocks. Complementary homo-oligomers with either six phenols or six phosphine oxides were synthesized and shown to form a stable duplex in nonpolar solvents by NMR denaturation experiments. The duplex was covalently trapped by equipping the ends of the oligomers with an azide and an alkyne group and using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The SPS methodology was adapted to synthesize mixed sequence libraries by using a mixture of two different dichlorotriazine building blocks in each coupling cycle of an oligomer synthesis. The resulting libraries contain statistical mixtures of all possible sequences. The self-assembly properties of these libraries were screened by using the CuAAC reaction to trap any duplexes present. In mixed sequence libraries of 6-mers, the trapping experiments showed that only sequence-complementary oligomers formed duplexes at micromolar concentrations in dichloromethane. The automated synthesis approach developed here provides access to large libraries of mixed sequence synthetic polymers, and the covalent trapping experiment provides a convenient tool for screening functional properties of mixtures. The results suggest high-fidelity sequence-selective duplex formation in mixtures of 6-mer sequences of the REMO architecture.

2.
J Environ Manage ; 347: 119143, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37804626

ABSTRACT

Catadromous European eel (Anguilla anguilla) are a critically endangered fish species due in part to in-river anthropogenic barriers (e.g., pumping stations, weirs, hydropower facilities). European legislation stipulates that safe downstream passage must be provided at hazardous intakes. Where present, gravity sluices have the potential to act as safe and low-cost downstream passage for seaward migrating silver eels at pumping station, but operational changes are required. This study used catchment-wide and fine-scale acoustic telemetry to investigate if operational changes (OC) at a pumping station (PS) with a co-located gravity sluice (GS) facilitated safe downstream passage for silver European eels. Specifically, night-time pump operations were ceased, river levels prior to sluicing were elevated and the GS was opened during key eel migration windows, i.e., at night during the new moon phase in autumn. No tagged eels passed through any pumps and the majority (2018 = 87.5%, 2020 = 88.9%) that approached the PS during OC passed downstream through the GS. Most eels approached during the first period of night sluicing after release (2018 = 73.9% and 2020 = 76.5%) and passed downstream during the first sluice event they experienced at the PS (2018 = 66.7% and 2020 = 75.0%). During the final approach prior to passage, very few retreats back upstream occurred at a median (IQR) distance of 34 (7.25) m from the GS and were predominantly a short distance (1-8 m). Overall, OC at a PS with a GS are considered a win-win-win, despite opening the sluice for <3% of the study period, given safe downstream passage was maximised, the financial benefits of sluicing water (∼£14,670 in direct operational costs over two years) and the relative ease of implementation.


Subject(s)
Anguilla , Animals , Rivers , Seasons , Telemetry , Water , Animal Migration
3.
PLoS One ; 6(6): e21619, 2011.
Article in English | MEDLINE | ID: mdl-21738736

ABSTRACT

BACKGROUND: Mutations that cause learning and memory defects in Drosophila melanogaster have been found to also compromise visual responsiveness and attention. A better understanding of attention-like defects in such Drosophila mutants therefore requires a more detailed characterization of visual responsiveness across a range of visual parameters. METHODOLOGY/PRINCIPAL FINDINGS: We designed an automated behavioral paradigm for efficiently dissecting visual responsiveness in Drosophila. Populations of flies walk through multiplexed serial choice mazes while being exposed to moving visuals displayed on computer monitors, and infra-red fly counters at the end of each maze automatically score the responsiveness of a strain. To test our new design, we performed a detailed comparison between wild-type flies and a learning and memory mutant, dunce(1). We first confirmed that the learning mutant dunce(1) displays increased responsiveness to a black/green moving grating compared to wild type in this new design. We then extended this result to explore responses to a wide range of psychophysical parameters for moving gratings (e.g., luminosity, contrast, spatial frequency, velocity) as well as to a different stimulus, moving dots. Finally, we combined these visuals (gratings versus dots) in competition to investigate how dunce(1) and wild-type flies respond to more complex and conflicting motion effects. CONCLUSIONS/SIGNIFICANCE: We found that dunce(1) responds more strongly than wild type to high contrast and highly structured motion. This effect was found for simple gratings, dots, and combinations of both stimuli presented in competition.


Subject(s)
Drosophila melanogaster/physiology , Animals , Drosophila melanogaster/genetics , Maze Learning/physiology , Mutation , Photic Stimulation
4.
J Exp Biol ; 212(Pt 10): 1436-41, 2009 May.
Article in English | MEDLINE | ID: mdl-19411536

ABSTRACT

A virulent strain of the obligate intracellular bacterium Wolbachia pipientis that shortens insect lifespan has recently been transinfected into the primary mosquito vector of dengue virus, Aedes aegypti L. The microbe's ability to shorten lifespan and spread through host populations under the action of cytoplasmic incompatibility means it has the potential to be used as a biocontrol agent to reduce dengue virus transmission. Wolbachia is present in many host tissues and may have local effects on diverse biological processes. In other insects, Wolbachia infections have been shown to alter locomotor activity and response time to food cues. In mosquitoes, locomotor performance relates to the location of mates, human hosts, resting sites and oviposition sites. We have therefore examined the effect of the virulent, life-shortening Wolbachia strain wMelPop on the locomotion of Ae. aegypti as they age and as the pathogenicity of the infection increases. In parallel experiments we also examined CO(2) production as a proxy for metabolic rate, to investigate a potential mechanistic explanation for any changes in locomotion. Contrary to expectation, we found that the infection increased activity and metabolic rate and that these effects were relatively consistent over the insect's lifespan. The results do not fit a standard model of bacterial pathogenesis in insects, and instead may reveal additional physiological changes induced by infection, such as either increased hunger or defects in the nervous system.


Subject(s)
Aedes/microbiology , Energy Metabolism/physiology , Motor Activity , Wolbachia/physiology , Aedes/physiology , Animals , Behavior, Animal , Female , Host-Pathogen Interactions , Male
9.
Health Serv J ; 117(6063): 5, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17844833
SELECTION OF CITATIONS
SEARCH DETAIL
...