Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
ACS Appl Polym Mater ; 6(11): 6314-6322, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38903400

ABSTRACT

Four-dimensional printing with embedded photoluminescence is emerging as an exciting area in additive manufacturing. Slim polymer films patterned with three-dimensional lattices of multimode cylindrical waveguides (waveguide-encoded lattices, WELs) with enhanced fields of view can be fabricated by localizing light as self-trapped beams within a photopolymerizable formulation. Luminescent WELs have potential applications as solar cell coatings and smart planar optical components. However, as luminophore-photoinitiator interactions are expected to change the photopolymerization kinetics, the design of robust luminescent photopolymer sols is nontrivial. Here, we use model photopolymer systems based on methacrylate-siloxane and epoxide homopolymers and their blends to investigate the influence of the luminophore Lumogen Violet (LV) on the photolysis kinetics of the Omnirad 784 photoinitiator through UV-vis absorbance spectroscopy. Initial rate analysis with different bulk polymers reveals differences in the pseudo-first-order rate constants in the absence and presence of LV, with a notable increase (∼40%) in the photolysis rate for the 1:1 blend. Fluorescence quenching studies, coupled with density functional theory calculations, establish that these differences arise due to electron transfer from the photoexcited LV to the ground-state photoinitiator molecules. We also demonstrate an in situ UV-vis absorbance technique that enables real-time monitoring of both waveguide formation and photoinitiator consumption during the fabrication of WELs. The in situ photolysis kinetics confirm that LV-photoinitiator interactions also influence the photopolymerization process during WEL formation. Our findings show that luminophores play a noninnocent role in photopolymerization and highlight the necessity for both careful consideration of the photopolymer formulation and a real-time monitoring approach to enable the fabrication of high-quality micropatterned luminescent polymeric films.

2.
J Synchrotron Radiat ; 31(Pt 4): 763-770, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38819843

ABSTRACT

Beamline B21 at the Diamond Light Source synchrotron in the UK is a small-angle X-ray scattering (SAXS) beamline that specializes in high-throughput measurements via automated sample delivery systems. A system has been developed whereby a sample can be illuminated by a focused beam of light coincident with the X-ray beam. The system is compatible with the highly automated sample delivery system at the beamline and allows a beamline user to select a light source from a broad range of wavelengths across the UV and visible spectrum and to control the timing and duration of the light pulse with respect to the X-ray exposure of the SAXS measurement. The intensity of the light source has been characterized across the wavelength range enabling experiments where a quantitative measure of dose is important. Finally, the utility of the system is demonstrated via measurement of several light-responsive samples.

3.
J Mater Chem C Mater ; 12(17): 6310-6318, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38707254

ABSTRACT

Triplet-triplet-annihilation upconversion (TTA-UC) has attracted significant attention as an approach to harvest low energy solar photons that cannot be captured by conventional photovoltaic devices. However, device integration requires the design of solid-state TTA-UC materials that combine high upconversion efficiency with long term stability. Herein, we report an efficient solid-state TTA-UC system based on organic-inorganic hybrid polymers known as ureasils as hosts for the archetypal sensitiser/emitter pair of palladium(ii) octaethylporphyrin and diphenylanthracene. The role of the ureasil structure on the TTA-UC performance was probed by varying the branching and molecular weight of the organic precursor to tune the structural, mechanical, and thermal properties. Solid-state green-to-blue UC quantum yields of up to 1.86% were observed under ambient conditions. Notably, depending on the ureasil structure, UC emission could be retained for >70 days without any special treatment, including deoxygenation. Detailed analysis of the structure-function trends revealed that while a low glass transition temperature is required to promote TTA-UC molecular collisions, a higher inorganic content is the primary factor that determines the UC efficiency and stability, due to the inherent oxygen barrier provided by the silica nanodomains.

4.
J Am Chem Soc ; 146(18): 12315-12319, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683357

ABSTRACT

Photoinduced manipulation of the nanoscale molecular structure and organization of soft materials can drive changes in the macroscale properties. Here we demonstrate the first example of a light-induced one- to three-dimensional mesophase transition at room temperature in lyotropic liquid crystals constructed from arylazopyrazole photosurfactants in water. We exploit this characteristic to use light to selectively control the rate of gas (CO2) diffusion across a prototype lyotropic liquid crystal membrane. Such control of phase organization, dimensionality, and permeability unlocks the potential for stimuli-responsive analogues in technologies for controlled delivery.

5.
Angew Chem Int Ed Engl ; 62(47): e202308602, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37647167

ABSTRACT

Image contrast is often limited by background autofluorescence in steady-state bioimaging microscopy. Upconversion bioimaging can overcome this by shifting the emission lifetime and wavelength beyond the autofluorescence window. Here we demonstrate the first example of triplet-triplet annihilation upconversion (TTA-UC) based lifetime imaging microscopy. A new class of ultra-small nanoparticle (NP) probes based on TTA-UC chromophores encapsulated in an organic-inorganic host has been synthesised. The NPs exhibit bright UC emission (400-500 nm) in aerated aqueous media with a UC lifetime of ≈1 µs, excellent colloidal stability and little cytotoxicity. Proof-of-concept demonstration of TTA-UC lifetime imaging using these NPs shows that the long-lived anti-Stokes emission is easily discriminable from typical autofluorescence. Moreover, fluctuations in the UC lifetime can be used to map local oxygen diffusion across the subcellular structure. Our TTA-UC NPs are highly promising stains for lifetime imaging microscopy, affording excellent image contrast and potential for oxygen mapping that is ripe for further exploitation.

6.
ACS Appl Opt Mater ; 1(5): 1012-1025, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37255505

ABSTRACT

Luminescent solar concentrators (LSCs) are a promising technology to help integrate solar cells into the built environment, as they are colorful, semitransparent, and can collect diffuse light. While LSCs have traditionally been cuboidal, in recent years, a variety of unconventional geometries have arisen, for example, circular, curved, polygonal, wedged, and leaf-shaped designs. These new designs can help reduce optical losses, facilitate incorporation into the built environment, or unlock new applications. However, as fabrication of complex geometries can be time- and resource-intensive, the ability to simulate the expected LSC performance prior to production would be highly advantageous. While a variety of software exists to model LSCs, it either cannot be applied to unconventional geometries, is not open-source, or is not tractable for most users. Therefore, here we introduce a significant upgrade of the widely used Monte Carlo ray-trace software pvtrace to include: (i) the capability to characterize unconventional geometries and improved relevance to standard measurement configurations; (ii) increased computational efficiency; and (iii) a graphical user interface (GUI) for ease-of-use. We first test these new features against data from the literature as well as experimental results from in-house fabricated LSCs, with agreement within 1% obtained for the simulated versus measured external photon efficiency. We then demonstrate the broad applicability of pvtrace by simulating 20 different unconventional geometries, including a variety of different shapes and manufacturing techniques. We show that pvtrace can be used to predict the optical efficiency of 3D-printed devices. The more versatile and accessible computational workflow afforded by our new features, coupled with 3D-printed prototypes, will enable rapid screening of more intricate LSC architectures, while reducing experimental waste. Our goal is that this accelerates sustainability-driven design in the LSC field, leading to higher optical efficiency or increased utility.

7.
Tissue Eng Part A ; 29(3-4): 102-111, 2023 02.
Article in English | MEDLINE | ID: mdl-36274231

ABSTRACT

Patient-oriented applications of cell culture include cell therapy of organ failure like chronic renal failure. Clinical deployment of a cell-based device for artificial renal replacement requires qualitative and quantitative fidelity of a cultured cell to its in vivo counterpart. Active specific apicobasal ion transport reabsorbs 90-99% of the filtered load of salt and water in the kidney. In a bioengineered kidney, tubular transport concentrates wastes and eliminates the need for hemodialysis, but renal tubule cells in culture transport little or no salt and water due to dedifferentiation that mammalian cells undergo in vitro thereby losing important cell-type specific functions. We previously identified transforming growth factor-ß (TGF-ß) as a signaling pathway necessary for in vitro differentiation of renal tubule cells. Inhibition of TGF-ß receptor-1 led to active and inhibitable electrolyte and water transport by primary human renal tubule epithelial cells in vitro. Addition of metformin increased transport, in the context of a transient effect on 5'-AMP-activated kinase phosphorylation. These data motivated us to examine whether increased transport was an idiosyncratic effect of SB431542, probe pathways downstream of TGF-ß receptors possibly responsible for the improved differentiation, evaluate whether TGF-ß inhibition induced a range of differentiated tubule functions, and to explore crosstalk between the effects of SB431542 and metformin. In this study, we use multiple small-molecule inhibitors of canonical and noncanonical pathways to confirm that inhibition of canonical TGF-ß signaling caused the increased apicobasal transport. Hallmarks of proximal tubule cell function, including sodium reabsorption, para-amino hippurate excretion, and glucose uptake increased with TGF-ß inhibition, and the specificity of the response was shown using inhibitors of each transport protein. We did not find any evidence of crosstalk between metformin and SB431542. These data suggest that the TGF-ß signaling pathway governs multiple features of differentiation in renal proximal tubule cells in vitro. Inhibition of TGF-ß by pharmacologic or genome engineering approaches may be a viable approach to enhancing differentiated function of tubule cells in vitro. Impact statement Cell therapy of renal failure requires qualitative and quantitative fidelity between in vitro and in vivo phenotypes, which has been elusive. We show that control of transforming growth factor-ß signaling can promote differentiation of renal tubule cells grown in artificial environments. This is a key enabling step for cell therapy of renal failure.


Subject(s)
Renal Insufficiency , Transforming Growth Factor beta , Animals , Humans , Cell Differentiation , Mammals/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factors/pharmacology
8.
Inorg Chem ; 61(46): 18458-18465, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36346922

ABSTRACT

Metal-organic framework crystal-glass composites (MOF CGCs) are a class of materials comprising a crystalline framework embedded within a MOF glass matrix. Herein, we investigate the thermal expansion behavior of three MOF CGCs, incorporating two flexible (MIL-53(Al) and MIL-118) and one rigid (UL-MOF-1) MOF within a ZIF-62 glass matrix. Specifically, variable-temperature powder X-ray diffraction data and thermomechanical analysis show the suppression of thermal expansivity in each of these three crystalline MOFs when suspended within a ZIF-62 glass matrix. In particular, for the two flexible frameworks, the average volumetric thermal expansion (ß) was found to be near-zero in the crystal-glass composite. These results provide a route to engineering thermal expansivity in stimuli-responsive MOF glass composites.

9.
J Am Chem Soc ; 144(42): 19532-19541, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36222426

ABSTRACT

Stimuli-responsive materials are crucial to advance controlled delivery systems for drugs and catalysts. Lyotropic liquid crystals (LLCs) have well-defined internal structures suitable to entrap small molecules and can be broken up into low-viscosity dispersions, aiding their application as delivery systems. In this work, we demonstrate the first example of light-responsive cubic LLC dispersions, or cubosomes, using photoswitchable amphiphiles to enable external control over the LLC structure and subsequent on-demand release of entrapped guest molecules. Azobenzene photosurfactants (AzoPS), containing a neutral tetraethylene glycol head group and azobenzene-alkyl tail, are combined (from 10-30 wt %) into monoolein-water systems to create LLC phases. Homogenization of the bulk LLC forms dispersions of particles, ∼200 nm in diameter with internal bicontinuous primitive cubic phases, as seen using small-angle X-ray scattering and cryo-transmission electron microscopy. Notably, increasing the AzoPS concentration leads to swelling of the cubic lattice, offering a method to tune the internal nanoscale structure. Upon UV irradiation, AzoPS within the cubosomes isomerizes within seconds, which in turn leads to squeezing of the cubic lattice and a decrease in the lattice parameter. This squeeze mechanism was successfully harnessed to enable phototriggerable release of trapped Nile Red guest molecules from the cubosome structure in minutes. The ability to control the internal structure of LLC dispersions using light, and the dramatic effect this has on the retention of entrapped molecules, suggests that these systems may have huge potential for the next-generation of nanodelivery.


Subject(s)
Liquid Crystals , Stimuli Responsive Polymers , Azo Compounds , Liquid Crystals/chemistry , Water/chemistry
10.
Soft Matter ; 18(31): 5770-5781, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35880460

ABSTRACT

Light-responsive particle-stabilised (Pickering) emulsions can in principle be selectively emulsified/demulsified on-demand through the remote application of light. However, despite their wide-ranging potential in applications such as drug delivery and biphasic catalysis, their rational design is extremely challenging and there are very few examples to date. Herein, we investigate a model system based on silica particles functionalised with azobenzene photoswitches to understand the key factors that determine the characteristics of light-responsive Pickering emulsions. The particle hydrophobicity is tuned through judicious variation of the spacer length used to graft the chromophores to the surface, the grafting density, and irradiation to induce trans-cis photoisomerisation. For select emulsions, and for the first time, a reversible transition between emulsified water-in-oil droplets and demulsified water and oil phases is observed with the application of either UV or blue light, which can be repeatedly cycled. A combination of surface energy analysis and optical microscopy is shown to be useful in predicting the stability, and expected light-response, of a given emulsion. Using the observed trends, a set of design rules are presented which will help facilitate the rational design, and therefore, more widespread application of light-responsive Pickering emulsions.

11.
Adv Sci (Weinh) ; 9(23): e2201160, 2022 08.
Article in English | MEDLINE | ID: mdl-35678107

ABSTRACT

Luminescent solar concentrators (LSCs) are an emerging technology to collect and channel light from a large absorption area into a smaller one. They are a complementary technology for traditional solar photovoltaics (PV), particularly suitable for application in urban or indoor environments where their custom colors and form factors, and performance under diffuse light conditions may be advantageous. Förster resonance energy transfer (FRET) has emerged as a valuable approach to overcome some of the intrinsic limitations of conventional single lumophore LSCs, such as reabsorption or reduced quantum efficiency. This review outlines the potential of FRET to boost LSC performance, using highlights from the literature to illustrate the key criteria that must be considered when designing an FRET-LSC, including both the photophysical requirements of the FRET lumophores and their interaction with the host material. Based on these criteria, a list of design guidelines intended to aid researchers when they approach the design of a new FRET-LSC system is presented. By highlighting the unanswered questions in this field, the authors aim to demonstrate the potential of FRET-LSCs for both conventional solar-harvesting and emerging LSC-inspired technologies and hope to encourage participation from a diverse researcher base to address this exciting challenge.


Subject(s)
Fluorescence Resonance Energy Transfer , Luminescence
12.
Pharmaceutics ; 14(5)2022 May 12.
Article in English | MEDLINE | ID: mdl-35631630

ABSTRACT

Several literature publications have described the potential application of active pharmaceutical ingredient (API)-polymer phase diagrams to identify appropriate temperature ranges for processing amorphous solid dispersion (ASD) formulations via the hot-melt extrusion (HME) technique. However, systematic investigations and reliable applications of the phase diagram as a risk assessment tool for HME are non-existent. Accordingly, within AbbVie, an HME risk classification system (HCS) based on API-polymer phase diagrams has been developed as a material-sparing tool for the early risk assessment of especially high melting temperature APIs, which are typically considered unsuitable for HME. The essence of the HCS is to provide an API risk categorization framework for the development of ASDs via the HME process. The proposed classification system is based on the recognition that the manufacture of crystal-free ASD using the HME process fundamentally depends on the ability of the melt temperature to reach the API's thermodynamic solubility temperature or above. Furthermore, we explored the API-polymer phase diagram as a simple tool for process design space selection pertaining to API or polymer thermal degradation regions and glass transition temperature-related dissolution kinetics limitations. Application of the HCS was demonstrated via HME experiments with two high melting temperature APIs, sulfamerazine and telmisartan, with the polymers Copovidone and Soluplus. Analysis of the resulting ASDs in terms of the residual crystallinity and degradation showed excellent agreement with the preassigned HCS class. Within AbbVie, the HCS concept has been successfully applied to more than 60 different APIs over the last 8 years as a robust validated risk assessment and quality-by-design (QbD) tool for the development of HME ASDs.

13.
Chem Mater ; 34(5): 2187-2196, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35578693

ABSTRACT

Melt-quenched metal-organic framework (MOF) glasses have gained significant interest as the first new category of glass reported in 50 years. In this work, an amine-functionalized zeolitic imidazolate framework (ZIF), denoted ZIF-UC-6, was prepared and demonstrated to undergo both melting and glass formation. The presence of an amine group resulted in a lower melting temperature compared to other ZIFs, while also allowing material properties to be tuned by post-synthetic modification (PSM). As a prototypical example, the ZIF glass surface was functionalized with octyl isocyanate, changing its behavior from hydrophilic to hydrophobic. PSM therefore provides a promising strategy for tuning the surface properties of MOF glasses.

14.
JACS Au ; 2(12): 2670-2677, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36590257

ABSTRACT

The self-assembly of an arylazopyrazole-based photosurfactant (PS), based on cetyltrimethylammonium bromide (CTAB), and its mixed micelle formation with CTAB in aqueous solution was investigated by small angle neutron and X-ray scattering (SANS/SAXS) and UV-vis absorption spectroscopy. Upon UV light exposure, PS photoisomerizes from E-PS (trans) to Z-PS (cis), which transforms oblate ellipsoidal micelles into smaller, spherical micelles with larger shell thickness. Doping PS with CTAB resulted in mixed micelle formation at all stoichiometries and conditions investigated; employing selectively deuterated PS, a monotonic variation in scattering length density and dimensions of the micellar core and shell is observed for all contrasts. The concentration- and irradiance-dependence of the E to Z configurational transition was established in both neat and mixed micelles. A liposome dye release assay establishes the enhanced efficacy of photosurfactants at membrane disruption, with E-PS exhibiting a 4-fold and Z-PS a 10-fold increase in fluorescence signal with respect to pure CTAB. Our findings pave the way for external triggering and modulation of the wide range of CTAB-based biomedical and material applications.

15.
J Mater Chem C Mater ; 9(39): 13914-13925, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34745631

ABSTRACT

Aggregation-induced emitters - or AIEgens - are often symbolised by their photoluminescence enhancement as a result of aggregation in a poor solvent. However, for some applications, it is preferable for the AIE response to be induced in the solid-state. Here, the ability of an organic-inorganic hybrid polymer host to induce the AIE response from embedded silole-based lumophores has been explored. We have focussed on understanding how the incorporation method controls the extent of lumophore aggregation and thus the associated photophysical properties. To achieve this, two sample concentration series have been prepared, based on either the parent AIEgen 1,1-dimethyl-2,3,4,5-tetraphenylsilole (DMTPS) or the silylated analogue (DMTPS-Sil), which were physically doped or covalently grafted, respectively, to dU(600) - a member of the ureasil family of poly(oxyalkylene)/siloxane hybrids. Steady-state and time-resolved photoluminescence measurements, coupled with confocal microscopy studies, revealed that covalent grafting leads to improved dispersibility of the AIEgen, reduced scattering losses, increased photoluminescence quantum yields (up to ca. 40%) and improved chemical stability. Moreover, the ureasil also functions as a photoactive host that undergoes excitation energy transfer to the embedded DMTPS-Sil with an efficiency of almost 70%. This study highlights the potential for designing complex photoluminescent hybrid polymers exhibiting an ehanced AIE response for solid-state optical applications.

16.
Macromolecules ; 54(12): 5287-5303, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34176961

ABSTRACT

Triplet-triplet annihilation upconversion (TTA-UC) is a process by which a lower energy photon can be upconverted to a higher energy state. The incorporation of TTA-UC materials into solid-state hosts has enabled advances in solar energy and many other applications. The choice of host system is, however, far from trivial and often calls for a careful compromise between characteristics such as high molecular mobility, low oxygen diffusion, and high material stability, factors that often contradict one another. Here, we evaluate these challenges in the context of the state-of-the-art of primarily polymer hosts and the advantages they hold in terms of material selection and tunability of their diffusion or mechanical or thermal properties. We encourage more collaborative research between polymer scientists and photophysicists in order to further optimize the current systems and outline our thoughts for the future direction of the field.

17.
Dalton Trans ; 50(10): 3529-3535, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33599672

ABSTRACT

The thermal behaviour of ZIF-8, Zn(meIm)2 in the presence of a sodium fluoroaluminophosphate glass melt was probed through differential scanning calorimetry and thermogravimetric analysis. The structural integrity of ZIF-8 was then determined by a combination of powder X-ray diffraction, Fourier transform infra-red and 1H nuclear magnetic resonance spectroscopy.

18.
Soft Matter ; 16(40): 9183-9187, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33001130

ABSTRACT

The formation of high-concentration mesophases by a cationic azobenzene photosurfactant is described for the first time. Using a combination of polarised optical microscopy and small-angle X-ray scattering, optically anisotropic, self-assembled structures with long-range order are reported. The mesophases are disrupted or lost upon UV irradiation.

19.
Nanoscale ; 12(21): 11694-11702, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32441286

ABSTRACT

Lead halide perovskite nanocrystals (PNCs) have emerged as promising candidates for use in optoelectronic devices. Significant focus has been directed towards optimising synthetic conditions to obtain PNCs with tunable emission properties. However, the reproducible production of stable PNC dispersions is also crucial for fabrication and scale-up of these devices using liquid deposition methods. Here, the stability of methylammonium lead halide (MAPbX3 where X = Br, I) PNCs produced via the ligand-assisted reprecipitation process is explored. We have focussed on understanding how different combinations of specific synthetic factors - dilution, halide source and ratio as well as capping-ligand concentration - affect the stability of the resultant PNC dispersion. Photoluminescence spectroscopy, transmission electron microscopy and dynamic light scattering studies revealed that subtle changes in the reaction conditions lead to significant changes in the particle morphology and associated optical properties, often with catastrophic consequences on stability. This study highlights the importance of designing PNC dispersions in order to make more efficient and reliable optoelectronic devices.

20.
J Mater Chem B ; 8(22): 4908-4916, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32315019

ABSTRACT

Organic-inorganic core-shell nanocomposites have attracted increasing attention for applications in imaging, controlled release, biomedical scaffolds and self-healing materials. While tunable properties can readily be achieved through the selection of complementary building blocks, synergistic enhancement requires management of the core-shell interface. In this work, we report a one-pot method to fabricate hybrid core-shell nanocomposite particles (CSNPs) based on ureasils. The native structure of ureasils, which are poly(oxyalkylene)/siloxane hybrids, affords formation of an organic polymer core via nanoprecipitation, while the terminal siloxane groups act as a template for nucleation and growth of the silica shell via the Stöber process. Through optimisation of the reaction conditions, we demonstrate the reproducible synthesis of ureasil CSNPs, with a hydrodynamic diameter of ∼150 nm and polydispersity <0.2, which remain electrostatically stabilised in aqueous media for >50 days. Selective functionalisation, either through the physical entrapment of polarity-sensitive fluorescent probes (coumarin 153, pyrene) or covalent-grafting to the silica shell (fluorescein isothiocyanate) is also demonstrated and provides insight into the internal environment of the particles. Moreover, preliminary studies using a live/dead cell assay indicate that ureasil CSNPs do not display cytotoxicity. Given the simple fabrication method and the structural tunability and biocompatability of the ureasils, this approach presents an efficient route to multifunctional core-shell nanocomposite particles whose properties may be tailored for a targeted application.


Subject(s)
Biocompatible Materials/chemistry , Nanocomposites/chemistry , Urea/chemistry , Biocompatible Materials/chemical synthesis , Molecular Structure , Particle Size , Surface Properties , Urea/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...