Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 18(7): e1010733, 2022 07.
Article in English | MEDLINE | ID: mdl-35849637

ABSTRACT

Emerging SARS-CoV-2 variants are creating major challenges in the ongoing COVID-19 pandemic. Being able to predict mutations that could arise in SARS-CoV-2 leading to increased transmissibility or immune evasion would be extremely valuable in development of broad-acting therapeutics and vaccines, and prioritising viral monitoring and containment. Here we use in vitro evolution to seek mutations in SARS-CoV-2 receptor binding domain (RBD) that would substantially increase binding to ACE2. We find a double mutation, S477N and Q498H, that increases affinity of RBD for ACE2 by 6.5-fold. This affinity gain is largely driven by the Q498H mutation. We determine the structure of the mutant-RBD:ACE2 complex by cryo-electron microscopy to reveal the mechanism for increased affinity. Addition of Q498H to SARS-CoV-2 RBD variants is found to boost binding affinity of the variants for human ACE2 and confer a new ability to bind rat ACE2 with high affinity. Surprisingly however, in the presence of the common N501Y mutation, Q498H inhibits binding, due to a clash between H498 and Y501 side chains. To achieve an intermolecular bonding network, affinity gain and cross-species binding similar to Q498H alone, RBD variants with the N501Y mutation must acquire instead the related Q498R mutation. Thus, SARS-CoV-2 RBD can access large affinity gains and cross-species binding via two alternative mutational routes involving Q498, with route selection determined by whether a variant already has the N501Y mutation. These mutations are now appearing in emerging SARS-CoV-2 variants where they have the potential to influence human-to-human and cross-species transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , Cryoelectron Microscopy , Humans , Mutation , Pandemics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Rats , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
2.
Environ Pollut ; 215: 154-163, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27182976

ABSTRACT

This paper aims to understand enantioselective transformation of amphetamine, methamphetamine, MDMA (3,4-methylenedioxy-methamphetamine) and MDA (3,4-methylenedioxyamphetamine) during wastewater treatment and in receiving waters. In order to undertake a comprehensive evaluation of the processes occurring, stereoselective transformation of amphetamine-like compounds was studied, for the first time, in controlled laboratory experiments: receiving water and activated sludge simulating microcosm systems. The results demonstrated that stereoselective degradation, via microbial metabolic processes favouring S-(+)-enantiomer, occurred in all studied amphetamine-based compounds in activated sludge simulating microcosms. R-(-)-enantiomers were not degraded (or their degradation was limited) which proves their more recalcitrant nature. Out of all four amphetamine-like compounds studied, amphetamine was the most susceptible to biodegradation. It was followed by MDMA and methamphetamine. Photochemical processes facilitated degradation of MDMA and methamphetamine but they were not, as expected, stereoselective. Preferential biodegradation of S-(+)-methamphetamine led to the formation of S-(+)-amphetamine. Racemic MDMA was stereoselectively biodegraded by activated sludge which led to its enrichment with R-(-)-enantiomer and formation of S-(+)-MDA. Interestingly, there was only mild stereoselectivity observed during MDMA degradation in rivers. This might be due to different microbial communities utilised during activated sludge treatment and those present in the environment. Kinetic studies confirmed the recalcitrant nature of MDMA.


Subject(s)
3,4-Methylenedioxyamphetamine/metabolism , Amphetamine/metabolism , Biodegradation, Environmental , Methamphetamine/metabolism , N-Methyl-3,4-methylenedioxyamphetamine/metabolism , Water Microbiology , Water/chemistry , Kinetics , Photochemical Processes , Rivers/microbiology , Sewage/microbiology , Stereoisomerism , Wastewater/chemistry , Wastewater/microbiology
3.
Anal Chim Acta ; 882: 112-26, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26043098

ABSTRACT

This is the first study presenting a multi-residue method allowing for comprehensive analysis of several chiral pharmacologically active compounds (cPACs) including beta-blockers, antidepressants and amphetamines in wastewater and digested sludge at the enantiomeric level. Analysis of both the liquid and solid matrices within wastewater treatment is crucial to being able to carry out mass balance within these systems. The method developed comprises filtration, microwave assisted extraction and solid phase extraction followed by chiral liquid chromatography coupled with tandem mass spectrometry to analyse the enantiomers of 18 compounds within all three matrices. The method was successfully validated for 10 compounds within all three matrices (amphetamine, methamphetamine, MDMA, MDA, venlafaxine, desmethylvenlafaxine, citalopram, metoprolol, propranolol and sotalol), 7 compounds validated for the liquid matrices only (mirtazapine, salbutamol, fluoxetine, desmethylcitalopram, atenolol, ephedrine and pseudoephedrine) and 1 compound (alprenolol) passing the criteria for solid samples only. The method was then applied to wastewater samples; cPACs were found at concentration ranges in liquid matrices of: 1.7 ng L(-1) (metoprolol) - 1321 ng L(-1) (tramadol) in influent,

Subject(s)
Chromatography, Liquid/methods , Illicit Drugs/analysis , Pharmaceutical Preparations/analysis , Sewage/chemistry , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Microwaves , Stereoisomerism
4.
PLoS One ; 9(3): e90889, 2014.
Article in English | MEDLINE | ID: mdl-24595451

ABSTRACT

BCL6 is a transcriptional repressor that is over-expressed due to chromosomal translocations, or other abnormalities, in ∼40% of diffuse large B-cell lymphoma. BCL6 interacts with co-repressor, SMRT, and this is essential for its role in lymphomas. Peptide or small molecule inhibitors, which prevent the association of SMRT with BCL6, inhibit transcriptional repression and cause apoptosis of lymphoma cells in vitro and in vivo. In order to discover compounds, which have the potential to be developed into BCL6 inhibitors, we screened a natural product library. The ansamycin antibiotic, rifamycin SV, inhibited BCL6 transcriptional repression and NMR spectroscopy confirmed a direct interaction between rifamycin SV and BCL6. To further determine the characteristics of compounds binding to BCL6-POZ we analyzed four other members of this family and showed that rifabutin, bound most strongly. An X-ray crystal structure of the rifabutin-BCL6 complex revealed that rifabutin occupies a partly non-polar pocket making interactions with tyrosine58, asparagine21 and arginine24 of the BCL6-POZ domain. Importantly these residues are also important for the interaction of BLC6 with SMRT. This work demonstrates a unique approach to developing a structure activity relationship for a compound that will form the basis of a therapeutically useful BCL6 inhibitor.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA-Binding Proteins/antagonists & inhibitors , Nuclear Receptor Co-Repressor 2/metabolism , Repressor Proteins/antagonists & inhibitors , Rifabutin/pharmacology , Rifamycins/pharmacology , Anti-Bacterial Agents/chemistry , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , HEK293 Cells , Humans , Models, Molecular , Nuclear Receptor Co-Repressor 2/chemistry , Protein Interaction Maps/drug effects , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-6 , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Rifabutin/chemistry , Rifamycins/chemistry , Transcription, Genetic/drug effects
5.
J Invest Dermatol ; 132(8): 2076-84, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22495178

ABSTRACT

Skin wound healing is a complex process requiring the coordinated, temporal orchestration of numerous cell types and biological processes to regenerate damaged tissue. Previous work has demonstrated that a functional ß-adrenergic receptor autocrine/paracrine network exists in skin, but the role of ß2-adrenergic receptor (ß2AR) in wound healing is unknown. A range of in vitro (single-cell migration, immunoblotting, ELISA, enzyme immunoassay), ex vivo (rat aortic ring assay), and in vivo (chick chorioallantoic membrane assay, zebrafish, murine wild-type, and ß2AR knockout excisional skin wound models) models were used to demonstrate that blockade or loss of ß2AR gene deletion promoted wound repair, a finding that is, to our knowledge, previously unreported. Compared with vehicle-only controls, ß2AR antagonism increased angiogenesis, dermal fibroblast function, and re-epithelialization, but had no effect on wound inflammation in vivo. Skin wounds in ß2AR knockout mice contracted and re-epithelialized faster in the first few days of wound repair in vivo. ß2AR antagonism enhanced cell motility through distinct intracellular signalling mechanisms and increased vascular endothelial growth factor secretion from keratinocytes. ß2AR antagonism promoted wound repair processes in the early stages of wound repair, revealing a possible new avenue for therapeutic intervention.


Subject(s)
Adrenergic beta-2 Receptor Antagonists/metabolism , Gene Deletion , Receptors, Adrenergic, beta-2/genetics , Skin/pathology , Animals , Aorta/pathology , Chick Embryo , Enzyme-Linked Immunosorbent Assay/methods , Fibroblasts/metabolism , Inflammation , Keratinocytes/cytology , Mice , Neovascularization, Pathologic , Rats , Time Factors , Vascular Endothelial Growth Factor A/biosynthesis , Wound Healing , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...