Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38882930

ABSTRACT

Drosophila Robo3 is an axon guidance receptor that regulates longitudinal axon tract formation in the embryonic ventral nerve cord. Robo3 is thought to guide longitudinal axons by signaling repulsion in response to Slit. To test this, we modified the robo3 locus to express a version of the receptor lacking its cytoplasmic domain (Robo3∆C). We find that longitudinal axon guidance is reduced, but not eliminated, in embryos expressing Robo3∆C. Our results show that Robo3's cytodomain is partially dispensable for its axon guidance activity and suggest that it may guide axons via a mechanism other than direct transduction of Slit-dependent signaling.

2.
bioRxiv ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37214810

ABSTRACT

Drosophila Robo3 is a member of the evolutionarily conserved Roundabout (Robo) receptor family and one of three Drosophila Robo paralogs. During embryonic ventral nerve cord development, Robo3 does not participate in canonical Slit-dependent midline repulsion, but instead regulates the formation of longitudinal axon pathways at specific positions along the medial-lateral axis. Longitudinal axon guidance by Robo3 is hypothesized to be Slit dependent, but this has not been directly tested. Here we create a series of Robo3 variants in which the N-terminal Ig1 domain is deleted or modified, in order to characterize the functional importance of Ig1 and Slit binding for Robo3's axon guidance activity. We show that Robo3 requires its Ig1 domain for interaction with Slit and for proper axonal localization in embryonic neurons, but deleting Ig1 from Robo3 only partially disrupts longitudinal pathway formation. Robo3 variants with modified Ig1 domains that cannot bind Slit retain proper localization and fully rescue longitudinal axon guidance. Our results indicate that Robo3 guides longitudinal axons independently of Slit, and that sequences both within and outside of Ig1 contribute to this Slit-independent activity.

3.
J Exp Biol ; 226(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37078652

ABSTRACT

Scaling between specific organs and overall body size has long fascinated biologists, being a primary mechanism by which organ shapes evolve. Yet, the genetic mechanisms that underlie the evolution of scaling relationships remain elusive. Here, we compared wing and fore tibia lengths (the latter as a proxy of body size) in Drosophila melanogaster, Drosophila simulans, Drosophila ananassae and Drosophila virilis, and show that the first three of these species have roughly a similar wing-to-tibia scaling behavior. In contrast, D. virilis exhibits much smaller wings relative to their body size compared with the other species and this is reflected in the intercept of the wing-to-tibia allometry. We then asked whether the evolution of this relationship could be explained by changes in a specific cis-regulatory region or enhancer that drives expression of the wing selector gene, vestigial (vg), whose function is broadly conserved in insects and contributes to wing size. To test this hypothesis directly, we used CRISPR/Cas9 to replace the DNA sequence of the predicted Quadrant Enhancer (vgQE) from D. virilis for the corresponding vgQE sequence in the genome of D. melanogaster. Strikingly, we discovered that D. melanogaster flies carrying the D. virilis vgQE sequence have wings that are significantly smaller with respect to controls, partially shifting the intercept of the wing-to-tibia scaling relationship towards that observed in D. virilis. We conclude that a single cis-regulatory element in D. virilis contributes to constraining wing size in this species, supporting the hypothesis that scaling could evolve through genetic variations in cis-regulatory elements.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Base Sequence , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Wings, Animal
4.
Fly (Austin) ; 16(1): 312-346, 2022 12.
Article in English | MEDLINE | ID: mdl-36217698

ABSTRACT

Receptor proteins of the Roundabout (Robo) family regulate axon guidance decisions during nervous system development. Among the three Drosophila robo family genes (robo1, robo2 and robo3), robo2 displays a dynamic expression pattern and regulates multiple axon guidance outcomes, including preventing midline crossing in some axons, promoting midline crossing in others, forming lateral longitudinal axon pathways, and regulating motor axon guidance. The identity and location of enhancer elements regulating robo2's complex and dynamic expression pattern in different neural cell types are unknown. Here, we characterize a set of 17 transgenic lines expressing GAL4 under the control of DNA sequences derived from noncoding regions in and around robo2, to identify enhancers controlling specific aspects of robo2 expression in the embryonic ventral nerve cord. We identify individual fragments that confer expression in specific cell types where robo2 is known to function, including early pioneer neurons, midline glia and lateral longitudinal neurons. Our results indicate that robo2's dynamic expression pattern is specified by a combination of enhancer elements that are active in different subsets of cells. We show that robo2's expression in lateral longitudinal axons represents two genetically separable subsets of neurons, and compare their axon projections with each other and with Fasciclin II (FasII), a commonly used marker of longitudinal axon pathways. In addition, we provide a general description of each fragment's expression in embryonic tissues outside of the nervous system, to serve as a resource for other researchers interested in robo2 expression and its functional roles outside the central nervous system.


Subject(s)
Drosophila Proteins/metabolism , Drosophila , Receptors, Immunologic/metabolism , Animals , Axons/metabolism , Drosophila/metabolism , Drosophila Proteins/genetics , Gene Expression Regulation, Developmental , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/genetics
5.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-35783575

ABSTRACT

In Drosophila , the pattern of the wing selector gene, vestigial ( vg ), is established by at least two enhancers: the Boundary Enhancer, which drives expression along the disc's Dorsal-Ventral boundary; and the Quadrant Enhancer (QE) that patterns the rest of the wing pouch. Using CRISPR/Cas9 editing, we deleted DNA fragments around the reported QE sequence and found that the full Vg pattern is formed. Furthermore, adult wings arising from these gene-edited animals are normal in shape and pattern, but slightly smaller in size, although this reduction is not wing-specific in males. We suggest that other enhancers act redundantly to establish the vg pattern and rescue wing development.

6.
Genesis ; 59(9): e23443, 2021 09.
Article in English | MEDLINE | ID: mdl-34411419

ABSTRACT

Drosophila Robo2 is a member of the evolutionarily conserved Roundabout (Robo) family of axon guidance receptors. Robo receptors signal midline repulsion in response to Slit ligands, which bind to the N-terminal Ig1 domain in most family members. In the Drosophila embryonic ventral nerve cord, Robo1 and Robo2 signal Slit-dependent midline repulsion, while Robo2 also regulates the medial-lateral position of longitudinal axon pathways and acts non-autonomously to promote midline crossing of commissural axons. While Robo2 signals midline repulsion in response to Slit, it is less clear whether Robo2's other activities are also Slit-dependent. To determine which of Robo2's axon guidance roles depend on its Slit-binding Ig1 domain, we used a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based strategy to replace the endogenous robo2 gene with a robo2 variant lacking the Ig1 domain (robo2∆Ig1). We compare the expression and localization of Robo2∆Ig1 protein with full-length Robo2 in embryonic neurons in vivo and examine its ability to substitute for Robo2 to mediate midline repulsion and lateral axon pathway formation. We find that the removal of the Ig1 domain from Robo2∆Ig1 disrupts both of these axon guidance activities. In addition, we find that the Ig1 domain of Robo2 is required for its proper subcellular localization in embryonic neurons, a role that is not shared by the Ig1 domain of Robo1. Finally, we report that although FasII-positive lateral axons are misguided in embryos expressing Robo2∆Ig1, the axons that normally express Robo2 are correctly guided to the lateral zone, suggesting that Robo2 may guide lateral longitudinal axons through a cell non-autonomous mechanism.


Subject(s)
Axon Guidance , Drosophila Proteins/metabolism , Immunoglobulin Domains , Receptors, Immunologic/metabolism , Animals , Binding Sites , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Protein Binding , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics
7.
Genetics ; 217(3)2021 03 31.
Article in English | MEDLINE | ID: mdl-33789352

ABSTRACT

The evolutionarily conserved Roundabout (Robo) family of axon guidance receptors control midline crossing of axons in response to the midline repellant ligand Slit in bilaterian animals including insects, nematodes, and vertebrates. Despite this strong evolutionary conservation, it is unclear whether the signaling mechanism(s) downstream of Robo receptors are similarly conserved. To directly compare midline repulsive signaling in Robo family members from different species, here we use a transgenic approach to express the Robo family receptor SAX-3 from the nematode Caenorhabditis elegans in neurons of the fruit fly, Drosophila melanogaster. We examine SAX-3's ability to repel Drosophila axons from the Slit-expressing midline in gain of function assays, and test SAX-3's ability to substitute for Drosophila Robo1 during fly embryonic development in genetic rescue experiments. We show that C. elegans SAX-3 is properly translated and localized to neuronal axons when expressed in the Drosophila embryonic CNS, and that SAX-3 can signal midline repulsion in Drosophila embryonic neurons, although not as efficiently as Drosophila Robo1. Using a series of Robo1/SAX-3 chimeras, we show that the SAX-3 cytoplasmic domain can signal midline repulsion to the same extent as Robo1 when combined with the Robo1 ectodomain. We show that SAX-3 is not subject to endosomal sorting by the negative regulator Commissureless (Comm) in Drosophila neurons in vivo, and that peri-membrane and ectodomain sequences are both required for Comm sorting of Drosophila Robo1.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Drosophila Proteins/genetics , Evolution, Molecular , Nerve Tissue Proteins/genetics , Receptors, Immunologic/genetics , Signal Transduction , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Conserved Sequence , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster , Endosomes/metabolism , Genetic Complementation Test , Membrane Proteins/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/physiology , Protein Transport , Receptors, Immunologic/chemistry , Receptors, Immunologic/metabolism , Roundabout Proteins
8.
PLoS One ; 15(10): e0241150, 2020.
Article in English | MEDLINE | ID: mdl-33091076

ABSTRACT

The Roundabout (Robo) family of axon guidance receptors has a conserved ectodomain arrangement of five immunoglobulin-like (Ig) domains plus three fibronectin type III (Fn) repeats. Based on the strong evolutionary conservation of this domain structure among Robo receptors, as well as in vitro structural and domain-domain interaction studies of Robo family members, this ectodomain arrangement is predicted to be important for Robo receptor signaling in response to Slit ligands. Here, we define the minimal ectodomain structure required for Slit binding and midline repulsive signaling in vivo by Drosophila Robo1. We find that the majority of the Robo1 ectodomain is dispensable for both Slit binding and repulsive signaling. We show that a significant level of midline repulsive signaling activity is retained when all Robo1 ectodomain elements apart from Ig1 are deleted, and that the combination of Ig1 plus one additional ectodomain element (Ig2, Ig5, or Fn3) is sufficient to restore midline repulsion to wild type levels. Further, we find that deleting four out of five Robo1 Ig domains (ΔIg2-5) does not affect negative regulation of Robo1 by Commissureless (Comm) or Robo2, while variants lacking all three fibronectin repeats (ΔFn1-3 and ΔIg2-Fn3) are insensitive to regulation by both Comm and Robo2, signifying a novel regulatory role for Robo1's Fn repeats. Our results provide an in vivo perspective on the importance of the conserved 5+3 ectodomain structure of Robo receptors, and suggest that specific biochemical properties and/or ectodomain structural conformations observed in vitro for domains other than Ig1 may have limited significance for in vivo signaling in the context of midline repulsion.


Subject(s)
Drosophila/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , Animals , Binding Sites , Drosophila/cytology , Drosophila Proteins/analysis , Drosophila Proteins/metabolism , Nerve Tissue Proteins/analysis , Protein Binding , Protein Domains , Protein Interaction Maps , Receptors, Immunologic/analysis , Roundabout Proteins
9.
Semin Cell Dev Biol ; 85: 13-25, 2019 01.
Article in English | MEDLINE | ID: mdl-29174915

ABSTRACT

Studies in the fruit fly Drosophila melanogaster have provided many fundamental insights into the genetic regulation of neural development, including the identification and characterization of evolutionarily conserved axon guidance pathways and their roles in important guidance decisions. Due to its highly organized and fast-developing embryonic nervous system, relatively small number of neurons, and molecular and genetic tools for identifying, labeling, and manipulating individual neurons or small neuronal subsets, studies of axon guidance in the Drosophila embryonic CNS have allowed researchers to dissect these genetic mechanisms with a high degree of precision. In this review, we discuss the major axon guidance pathways that regulate midline crossing of axons and the formation and guidance of longitudinal axon tracts, two processes that contribute to the development of the precise three-dimensional structure of the insect nerve cord. We focus particularly on recent insights into the roles and regulation of canonical midline axon guidance pathways, and on additional factors and pathways that have recently been shown to contribute to axon guidance decisions at and near the midline.


Subject(s)
Axon Guidance , Central Nervous System/cytology , Drosophila/cytology , Drosophila/embryology , Animals , Axons/metabolism , Central Nervous System/embryology
11.
G3 (Bethesda) ; 8(2): 621-630, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29217730

ABSTRACT

The repellant ligand Slit and its Roundabout (Robo) family receptors regulate midline crossing of axons during development of the embryonic central nervous system (CNS). Slit proteins are produced at the midline and signal through Robo receptors to repel axons from the midline. Disruption of Slit-Robo signaling causes ectopic midline-crossing phenotypes in the CNS of a broad range of animals, including insects and vertebrates. While previous studies have investigated the roles of Drosophila melanogaster Robo1's five Immunoglobulin-like (Ig) domains, little is known about the importance of the three evolutionarily conserved Fibronectin (Fn) type-III repeats. We have individually deleted each of Drosophila Robo1's three Fn repeats, and then tested these Robo1 variants in vitro to determine their ability to bind Slit in cultured Drosophila cells and in vivo to investigate the requirement for each domain in regulating Robo1's embryonic expression pattern, axonal localization, midline repulsive function, and sensitivity to Commissureless (Comm) downregulation. We demonstrate that the Fn repeats are not required for Robo1 to bind Slit or for proper expression of Robo1 in Drosophila embryonic neurons. When expressed in a robo1 mutant background, these variants are able to restore midline repulsion to an extent equivalent to full-length Robo1. We identify a novel requirement for Fn3 in the exclusion of Robo1 from commissures and downregulation of Robo1 by Comm. Our results indicate that each of the Drosophila Robo1 Fn repeats are individually dispensable for the protein's role in midline repulsion, despite the evolutionarily conserved "5 + 3" protein structure.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Fibronectins/genetics , Nerve Tissue Proteins/genetics , Receptors, Immunologic/genetics , Repetitive Sequences, Amino Acid/genetics , Amino Acid Sequence , Animals , Animals, Genetically Modified , Cell Line , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/embryology , Gene Expression Regulation, Developmental , Mutation , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/metabolism , Roundabout Proteins
12.
Evodevo ; 8: 10, 2017.
Article in English | MEDLINE | ID: mdl-28588759

ABSTRACT

BACKGROUND: Axon guidance receptors of the Roundabout (Robo) family regulate a number of axon guidance outcomes in bilaterian animals in addition to their canonical role in Slit-dependent midline repulsion. In the fruit fly Drosophila melanogaster, three Robo paralogs (Robo1, Robo2, and Robo3) each have specialized roles in regulating midline crossing and the formation of longitudinal axon pathways in the embryonic ventral nerve cord. The number of robo genes differs in other insects, and it is unknown whether the roles and/or signaling mechanisms of Drosophila Robos are shared in other insect species. To directly compare the axon guidance activities of Robo receptors in Drosophila and the flour beetle Tribolium castaneum, I have used a CRISPR/Cas9-based approach to replace Drosophila robo3 with Tribolium robo2/3. RESULTS: I show that when expressed from the robo3 locus in Drosophila embryos, Tribolium Robo2/3 (TcRobo2/3) protein is properly translated and localized to axons, where it reproduces the normal expression pattern of Drosophila Robo3. In embryos expressing TcRobo2/3 in place of robo3, two distinct subsets of longitudinal axons are guided properly to their normal positions in the intermediate neuropile, indicating that TcRobo2/3 can promote Robo3-dependent axon guidance decisions in developing Drosophila neurons. CONCLUSIONS: These observations suggest that the mechanism by which Drosophila Robo3 promotes longitudinal pathway formation is evolutionarily conserved in Tribolium, where it is performed by TcRobo2/3. The CRISPR/Cas9-based gene replacement approach described here can be applied to comparative evolutionary developmental studies of other Drosophila genes and their orthologs in other species.

13.
Curr Opin Insect Sci ; 18: 11-16, 2016 12.
Article in English | MEDLINE | ID: mdl-27939705

ABSTRACT

During embryonic development, growing axons are guided by cellular signaling pathways that control a series of individual axon guidance decisions. In Drosophila, two major pathways (Netrin-Frazzled/DCC and Slit-Robo) regulate axon guidance in the embryonic ventral nerve cord, including the critical decision of whether or not to cross the midline. Studies in the fruit fly have revealed a complex picture of precise regulation and cross-talk between these pathways. In addition, Robo receptors in Drosophila have diversified their activities to regulate additional axon guidance decisions in the developing embryo. Here, I discuss recent advances in understanding roles and regulation of the Net-Fra and Slit-Robo signaling pathways in Drosophila, and examine the evolutionary conservation of these signaling mechanisms across insects and other arthropods.


Subject(s)
Drosophila Proteins/metabolism , Insecta/embryology , Signal Transduction/physiology , Animals , Axon Guidance/physiology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Drosophila/embryology , Nerve Tissue Proteins/metabolism , Netrin Receptors/metabolism , Receptors, Immunologic/metabolism , Repressor Proteins/metabolism , Roundabout Proteins
14.
Neural Dev ; 11(1): 15, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27539083

ABSTRACT

BACKGROUND: In animals with bilateral symmetry, midline crossing of axons in the developing central nervous system is regulated by Slit ligands and their neuronal Roundabout (Robo) receptors. Multiple structural domains are present in an evolutionarily conserved arrangement in Robo family proteins, but our understanding of the functional importance of individual domains for midline repulsive signaling is limited. METHODS: We have examined the functional importance of each of the five conserved immunoglobulin-like (Ig) domains within the Drosophila Robo1 receptor. We generated a series of Robo1 variants, each lacking one of the five Ig domains (Ig1-5), and tested each for their ability to bind Slit when expressed in cultured Drosophila cells. We used a transgenic approach to express each variant in robo1's normal expression pattern in wild-type and robo1 mutant embryos, and examined the effects of deleting each domain on receptor expression, axonal localization, regulation, and midline repulsive signaling in vivo. RESULTS: We show that individual deletion of Ig domains 2-5 does not interfere with Robo1's ability to bind Slit, while deletion of Ig1 strongly disrupts Slit binding. None of the five Ig domains (Ig1-5) are individually required for proper expression of Robo1 in embryonic neurons, for exclusion from commissural axon segments in wild-type embryos, or for downregulation by Commissureless (Comm), a negative regulator of Slit-Robo repulsion in Drosophila. Each of the Robo1 Ig deletion variants (with the exception of Robo1∆Ig1) were able to restore midline crossing in robo1 mutant embryos to nearly the same extent as full-length Robo1, indicating that Ig domains 2-5 are individually dispensable for midline repulsive signaling in vivo. CONCLUSIONS: Our findings indicate that four of the five Ig domains within Drosophila Robo1 are dispensable for its role in midline repulsion, despite their strong evolutionary conservation, and highlight a unique requirement for the Slit-binding Ig1 domain in the regulation of midline crossing.


Subject(s)
Axon Guidance , Axons/metabolism , Drosophila Proteins/metabolism , Immunoglobulin Domains , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/metabolism , Animals , Animals, Genetically Modified , Axons/physiology , Cells, Cultured , Drosophila , Drosophila Proteins/physiology , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Receptors, Immunologic/genetics , Receptors, Immunologic/physiology , Roundabout Proteins
15.
G3 (Bethesda) ; 5(11): 2429-39, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26362767

ABSTRACT

The midline repellant ligand Slit and its Roundabout (Robo) family receptors constitute the major midline repulsive pathway in bilaterians. Slit proteins produced at the midline of the central nervous system (CNS) signal through Robo receptors expressed on axons to prevent them from crossing the midline, and thus regulate connectivity between the two sides of the nervous system. Biochemical structure and interaction studies support a model in which Slit binding to the first immunoglobulin-like (Ig1) domain of Robo receptors activates a repulsive signaling pathway in axonal growth cones. Here, we examine the in vivo functional importance of the Ig1 domain of the Drosophila Robo1 receptor, which controls midline crossing of axons in response to Slit during development of the embryonic CNS. We show that deleting Ig1 from Robo1 disrupts Slit binding in cultured Drosophila cells, and that a Robo1 variant lacking Ig1 (Robo1(∆Ig1)) is unable to promote ectopic midline repulsion in gain-of-function studies in the Drosophila embryonic CNS. We show that the Ig1 domain is not required for proper expression, axonal localization, or Commissureless (Comm)-dependent regulation of Robo1 in vivo, and we use a genetic rescue assay to show that Robo1(∆Ig1) is unable to substitute for full-length Robo1 to properly regulate midline crossing of axons. These results establish a direct link between in vitro biochemical studies of Slit-Robo interactions and in vivo genetic studies of Slit-Robo signaling during midline axon guidance, and distinguish Slit-dependent from Slit-independent aspects of Robo1 expression, regulation, and activity during embryonic development.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/genetics , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/metabolism , Animals , Axonal Transport , Binding Sites , Cells, Cultured , Drosophila/embryology , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Gene Expression Regulation, Developmental , Growth Cones/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Protein Binding , Protein Transport , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics , Roundabout Proteins
16.
Elife ; 4: e08407, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26186094

ABSTRACT

During nervous system development, commissural axons cross the midline despite the presence of repellant ligands. In Drosophila, commissural axons avoid premature responsiveness to the midline repellant Slit by expressing the endosomal sorting receptor Commissureless, which reduces surface expression of the Slit receptor Roundabout1 (Robo1). In this study, we describe a distinct mechanism to inhibit Robo1 repulsion and promote midline crossing, in which Roundabout2 (Robo2) binds to and prevents Robo1 signaling. Unexpectedly, we find that Robo2 is expressed in midline cells during the early stages of commissural axon guidance, and that over-expression of Robo2 can rescue robo2-dependent midline crossing defects non-cell autonomously. We show that the extracellular domains required for binding to Robo1 are also required for Robo2's ability to promote midline crossing, in both gain-of-function and rescue assays. These findings indicate that at least two independent mechanisms to overcome Slit-Robo1 repulsion in pre-crossing commissural axons have evolved in Drosophila.


Subject(s)
Commissural Interneurons/physiology , Drosophila Proteins/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Animals , Drosophila , Protein Binding , Protein Interaction Mapping , Signal Transduction , Roundabout Proteins
17.
Org Biomol Chem ; 10(36): 7292-304, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22878622

ABSTRACT

Enzymatic cis-dihydroxylation of benzo[b]thiophene, benzo[b]furan and several methyl substituted derivatives was found to occur in both the carbocyclic and heterocyclic rings. Relative and absolute configurations and enantiopurities of the resulting dihydrodiols were determined. Hydrogenation of the alkene bond in carbocyclic cis-dihydrodiols and ring-opening epimerization/reduction reactions of heterocyclic cis/trans-dihydrodiols were also studied. The relatively stable heterocyclic dihydrodiols of benzo[b]thiophene and benzo[b]furan showed a strong preference for the trans configuration in aqueous solutions. The 2,3-dihydrodiol metabolite of benzo[b]thiophene was utilized as a precursor in the chemoenzymatic synthesis of the unstable arene oxide, benzo[b]thiophene 2,3-oxide.


Subject(s)
Benzofurans/metabolism , Biocatalysis , Oxygenases/metabolism , Thiophenes/metabolism , Benzofurans/chemistry , Crystallography, X-Ray , Hydroxylation , Models, Molecular , Molecular Structure , Stereoisomerism , Thiophenes/chemistry
18.
Dev Biol ; 363(1): 266-78, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22245052

ABSTRACT

As the complexity of animal nervous systems has increased during evolution, developmental control of neuronal connectivity has become increasingly refined. How has functional diversification within related axon guidance molecules contributed to the evolution of nervous systems? To address this question, we explore the evolution of functional diversity within the Roundabout (Robo) family of axon guidance receptors. In Drosophila, Robo and Robo2 promote midline repulsion, while Robo2 and Robo3 specify the position of longitudinal axon pathways. The Robo family has expanded by gene duplication in insects; robo2 and robo3 exist as distinct genes only within dipterans, while other insects, like the flour beetle Tribolium castaneum, retain an ancestral robo2/3 gene. Both Robos from Tribolium can mediate midline repulsion in Drosophila, but unlike the fly Robos cannot be down-regulated by Commissureless. The overall architecture and arrangement of longitudinal pathways are remarkably conserved in Tribolium, despite it having only two Robos. Loss of TcSlit causes midline collapse of axons in the beetle, a phenotype recapitulated by simultaneous knockdown of both Robos. Single gene knockdowns reveal that beetle Robos have specialized axon guidance functions: TcRobo is dedicated to midline repulsion, while TcRobo2/3 also regulates longitudinal pathway formation. TcRobo2/3 knockdown reproduces aspects of both Drosophila robo2 and robo3 mutants, suggesting that TcRobo2/3 has two functions that in Drosophila are divided between Robo2 and Robo3. The ability of Tribolium to organize longitudinal axons into three discrete medial-lateral zones with only two Robo receptors demonstrates that beetle and fly achieve equivalent developmental outcomes using divergent genetic programs.


Subject(s)
Axons/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Insect Proteins/genetics , Tribolium/genetics , Amino Acid Sequence , Animals , Axons/physiology , Drosophila Proteins/classification , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Evolution, Molecular , Female , Gene Expression Regulation, Developmental , Genetic Variation , Immunohistochemistry , Insect Proteins/classification , Insect Proteins/metabolism , Male , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nervous System/embryology , Nervous System/metabolism , Phylogeny , RNA Interference , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Signal Transduction/genetics , Tribolium/embryology , Tribolium/metabolism , Roundabout Proteins
19.
Curr Biol ; 20(6): 567-72, 2010 Mar 23.
Article in English | MEDLINE | ID: mdl-20206526

ABSTRACT

Recognition molecules of the immunoglobulin (Ig) superfamily control axon guidance in the developing nervous system. Ig-like domains are among the most widely represented protein domains in the human genome, and the number of Ig superfamily proteins is strongly correlated with cellular complexity. In Drosophila, three Roundabout (Robo) Ig superfamily receptors respond to their common Slit ligand to regulate axon guidance at the midline: Robo and Robo2 mediate midline repulsion, Robo2 and Robo3 control longitudinal pathway selection, and Robo2 can promote midline crossing. How these closely related receptors mediate distinct guidance functions is not understood. We report that the differential functions of Robo2 and Robo3 are specified by their ectodomains and do not reflect differences in cytoplasmic signaling. Functional modularity of Robo2's ectodomain facilitates multiple guidance decisions: Ig1 and Ig3 of Robo2 confer lateral positioning activity, whereas Ig2 confers promidline crossing activity. Robo2's distinct functions are not dependent on greater Slit affinity but are instead due in part to differences in multimerization and receptor-ligand stoichiometry conferred by Robo2's Ig domains. Together, our findings suggest that diverse responses to the Slit guidance cue are imparted by intrinsic structural differences encoded in the extracellular Ig domains of the Robo receptors.


Subject(s)
Drosophila/embryology , Drosophila/physiology , Nerve Tissue Proteins/physiology , Receptors, Immunologic/physiology , Animals , Animals, Genetically Modified , Axons/physiology , Body Patterning , Central Nervous System/embryology , Drosophila/genetics , Drosophila/immunology , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Genes, Insect , Humans , Immunoglobulins/chemistry , Immunoglobulins/genetics , Immunoglobulins/physiology , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Protein Multimerization , Protein Structure, Tertiary , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Roundabout Proteins
20.
Curr Opin Neurobiol ; 20(1): 79-85, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20074930

ABSTRACT

In bilaterally symmetric organisms, the midline is a critical organizing center for the developing central nervous system. There is a striking conservation of the molecules and mechanisms that control axon path finding at the midline in vertebrate and invertebrate nervous systems. The majority of axons in the CNS cross the midline before projecting to their contralateral synaptic targets and this crossing decision is under exquisite spatial and temporal regulation. Growing commissural axons initially respond to attractive signals, while inhibiting responses to repulsive signals. Once across, repulsion dominates, allowing axons to leave and preventing them from re-entering the midline. Here we review recent advances in flies and mice that illuminate the molecular mechanisms underlying the establishment of precise connectivity at the midline.


Subject(s)
Axons/physiology , Body Patterning/physiology , Cell Movement/physiology , Animals , Drosophila , Mice , Nerve Growth Factors/physiology , Nerve Tissue Proteins/physiology , Neurogenesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...