Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 32(4): R181-R196, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35231416

ABSTRACT

Two major environmental challenges of our time are responding to climate change and reversing biodiversity decline. Interventions that simultaneously tackle both challenges are highly desirable. To date, most studies aiming to find synergistic interventions for these two challenges have focused on protecting or restoring vegetation and soils but overlooked how conservation or restoration of large wild animals might influence the climate mitigation and adaptation potential of ecosystems. However, interactions between large animal conservation and climate change goals may not always be positive. Here, we review wildlife conservation and climate change mitigation in terrestrial and marine ecosystems. We elucidate general principles about the biome types where, and mechanisms by which, positive synergies and negative trade-offs between wildlife conservation and climate change mitigation are likely. We find that large animals have the greatest potential to facilitate climate change mitigation at a global scale via three mechanisms: changes in fire regime, especially in previously low-flammability biomes with a new or intensifying fire regime, such as mesic grasslands or warm temperate woodlands; changes in terrestrial albedo, particularly where there is potential to shift from closed canopy to open canopy systems at higher latitudes; and increases in vegetation and soil carbon stocks, especially through a shift towards below-ground carbon pools in temperate, tropical and sub-tropical grassland ecosystems. Large animals also contribute to ecosystem adaptation to climate change by promoting complexity of trophic webs, increasing habitat heterogeneity, enhancing plant dispersal, increasing resistance to abrupt ecosystem change and through microclimate modification.


Subject(s)
Climate Change , Ecosystem , Animals , Animals, Wild , Biodiversity , Carbon , Conservation of Natural Resources , Soil
2.
Nature ; 567(7748): 311, 2019 03.
Article in English | MEDLINE | ID: mdl-30890806

Subject(s)
Climate , Forests
3.
Nat Commun ; 9(1): 911, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29500360

ABSTRACT

Expansion of Hevea brasiliensis rubber plantations is a resurgent driver of deforestation, carbon emissions, and biodiversity loss in Southeast Asia. Southeast Asian rubber extent is massive, equivalent to 67% of oil palm, with rapid further expansion predicted. Results-based carbon finance could dis-incentivise forest conversion to rubber, but efficacy will be limited unless payments match, or at least approach, the costs of avoided deforestation. These include opportunity costs (timber and rubber profits), plus carbon finance scheme setup (transaction) and implementation costs. Using comprehensive Cambodian forest data, exploring scenarios of selective logging and conversion, and assuming land-use choice is based on net present value, we find that carbon prices of $30-$51 per tCO2 are needed to break even against costs, higher than those currently paid on carbon markets or through carbon funds. To defend forests from rubber, either carbon prices must be increased, or other strategies are needed, such as corporate zero-deforestation pledges, and governmental regulation and enforcement of forest protection.

5.
PLoS One ; 7(10): e40482, 2012.
Article in English | MEDLINE | ID: mdl-23077476

ABSTRACT

Conservation investment, particularly for charismatic and wide-ranging large mammal species, needs to be evidence-based. Despite the prevalence of this theme within the literature, examples of robust data being generated to guide conservation policy and funding decisions are rare. We present the first published case-study of tiger conservation in Indochina, from a site where an evidence-based approach has been implemented for this iconic predator and its prey. Despite the persistence of extensive areas of habitat, Indochina's tiger and ungulate prey populations are widely supposed to have precipitously declined in recent decades. The Seima Protection Forest (SPF), and broader Eastern Plains Landscape, was identified in 2000 as representing Cambodia's best hope for tiger recovery; reflected in its designation as a Global Priority Tiger Conservation Landscape. Since 2005 distance sampling, camera-trapping and detection-dog surveys have been employed to assess the recovery potential of ungulate and tiger populations in SPF. Our results show that while conservation efforts have ensured that small but regionally significant populations of larger ungulates persist, and density trends in smaller ungulates are stable, overall ungulate populations remain well below theoretical carrying capacity. Extensive field surveys failed to yield any evidence of tiger, and we contend that there is no longer a resident population within the SPF. This local extirpation is believed to be primarily attributable to two decades of intensive hunting; but importantly, prey densities are also currently below the level necessary to support a viable tiger population. Based on these results and similar findings from neighbouring sites, Eastern Cambodia does not currently constitute a Tiger Source Site nor meet the criteria of a Global Priority Tiger Landscape. However, SPF retains global importance for many other elements of biodiversity. It retains high regional importance for ungulate populations and potentially in the future for Indochinese tigers, given adequate prey and protection.


Subject(s)
Animals, Wild , Artiodactyla , Conservation of Natural Resources , Elephants , Tigers , Animals , Cambodia
SELECTION OF CITATIONS
SEARCH DETAIL
...