Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 2): 046601, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21599320

ABSTRACT

The quantum linear response of a dielectric to an external electric field yields expressions for the dielectric susceptibility and the associated impulse response function. These are measured properties that, during analysis, are often "curve-fitted" to diverse forms of parametric functional forms that shall herein be referred to as fit-functions. The main purpose of this paper is to show, from a very general linear response formalism that encompasses virtually all microscopic models of dielectric response, that there are constraints on the forms that the susceptibilities must obey and to examine common parametrizations of the dielectric function in light of these constraints. Naturally these constraints should, whenever possible, be in-built into the fit-functions employed. The linear response approach due to Madden and Kivelson [Adv. Chem. Phys. 56, 467 (1984)], where the cause is considered to be a uniform external field, E(ext)(t), is utilized as it affords a much more straightforward interaction term, viz., -M·E(ext)(t), (M being the system's total electric dipole moment operator) than would be the case if the mean internal field (or "Maxwell field") were taken as the cause. It is shown that this implies definite relations between the quasipermittivity, ζ(ω), of the Madden-Kivelson approach and the normal permittivity, χ(ω)≡ε(ω)-ε(0). These relations indicate a condition for the divergence of the normal susceptibility, which, arguably, marks the onset of a ferroelectric transition in "sufficiently polar" dielectrics. Finally, some common parametric "fit-function" forms are investigated as to whether they comply with the constraints that the formalism imposes, and examples are given of their associated Cole-Cole plots in typical cases involving one or more relaxation times.

2.
J Chem Phys ; 131(21): 214509, 2009 Dec 07.
Article in English | MEDLINE | ID: mdl-19968353

ABSTRACT

A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)<

Subject(s)
Algorithms , Mechanical Phenomena , Computer Simulation , Stress, Mechanical , Time Factors , Viscosity
3.
J Phys Chem B ; 111(6): 1455-64, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17249725

ABSTRACT

Molecular dynamics simulations have been used to calculate the self-diffusion coefficient, D, of the hard sphere fluid over a wide density range and for different numbers of particles, N, between 32 and 10 976. These data are fitted to the relationship D = D(infinity) - AN(-alpha) where the parameters D(infinity), A, and alpha are all density-dependent (the temperature dependence of D can be trivially scaled out in all cases). The value alpha = 1/3 has been predicted on the basis of hydrodynamic arguments. In the studied system size range, the best value of alpha is approximately 1/3 at intermediate packing fractions of approximately 0.35, but increases in the low- and high-density extremes. At high density, the scaling follows more closely that of the thermodynamic properties, that is, with an exponent of order unity. At low packing fractions (less than approximately 0.1), the exponent increases again, appearing to approach a limiting value of unity in the zero-density limit. The origin of this strong N dependence at low density probably lies in the divergence in the mean path between collisions, as compared with the dimensions of the simulation cell. A new simple analytical fit formula based on fitting to previous simulation data is proposed for the density dependence of the shear viscosity. The Stokes-Einstein relationship and the dependence of D on the excess entropy were also explored. The product Deta(s)p with p = 0.975 was found to be approximately constant, with a value of 0.15 in the packing fraction range between 0.2 and 0.5.


Subject(s)
Algorithms , Computer Simulation , Microfluidics , Nanoparticles/chemistry , Diffusion , Hardness , Least-Squares Analysis , Molecular Conformation , Particle Size , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...