Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Res ; 99(8): 1957-1972, 2021 08.
Article in English | MEDLINE | ID: mdl-33844860

ABSTRACT

Binge drinking is a common occurrence in the United States, but a high concentration of alcohol in the blood has been shown to have reinforcing and reciprocal effects on the neuroimmune system in both dependent and non-dependent scenarios. The first part of this study examined alcohol's effects on the astrocytic response in the central amygdala and basolateral amygdala (BLA) in a non-dependent model. C57BL/6J mice were given access to either ethanol, water, or sucrose during a "drinking in the dark" paradigm, and astrocyte number and astrogliosis were measured using immunohistochemistry. Results indicate that non-dependent consumption increased glial fibrillary acidic protein (GFAP) density but not the number of GFAP+ cells, suggesting that non-dependent ethanol is sufficient to elicit astrocyte activation. The second part of this study examined how astrocytes impacted behaviors and the neurochemistry related to alcohol using the chemogenetic tool, DREADDs (designer receptors exclusively activated by designer drugs). Transgenic GFAP-hM3Dq mice were administered clozapine N-oxide both peripherally, affecting the entire central nervous system (CNS), or directly into the BLA. In both instances, GFAP-Gq-signaling activation significantly reduced ethanol consumption and correlating blood ethanol concentrations. However, GFAP-Gq-DREADD activation throughout the CNS had more broad effects resulting in decreased locomotor activity and sucrose consumption. More targeted GFAP-Gq-signaling activation in the BLA only impacted ethanol consumption. Finally, a glutamate assay revealed that after GFAP-Gq-signaling activation glutamate concentrations in the amygdala were partially normalized to control levels. Altogether, these studies support the theory that astrocytes represent a viable target for alcohol use disorder therapies.


Subject(s)
Astrocytes/metabolism , Basolateral Nuclear Complex/metabolism , Binge Drinking/metabolism , Ethanol/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Animals , Binge Drinking/immunology , Glutamic Acid , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/drug effects
2.
Environ Sci Technol ; 54(24): 16147-16155, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33269914

ABSTRACT

Providing safe and reliable sanitation services to the billions of people currently lacking them will require a multiplicity of approaches. Improving onsite wastewater treatment to standards enabling water reuse would reduce the need to transport waste and fresh water over long distances. Here, we describe a compact, automated system designed to treat the liquid fraction of blackwater for onsite water reuse that combines cross-flow ultrafiltration, activated carbon, and electrochemical oxidation. In laboratory testing, the system consistently produces effluent with 6 ≤ pH ≤ 9, total suspended solids (TSS) < 30 mg L-1, and chemical oxygen demand (COD) < 150 mg L-1. These effluent parameters were achieved across a wide range of values for influent TSS (61-820 mg L-1) and COD (384-1505 mg L-1), demonstrating a robust system for treating wastewater of varying strengths. A preliminary techno-economic analysis (TEA) was conducted to elucidate primary cost drivers and prioritize research and development pathways toward commercial feasibility. The ultrafiltration system is the primary cost driver, contributing to >50% of both the energy and maintenance costs. Several scenario parameters showed an outsized impact on costs relative to technology parameters. Specific technological improvements for future prototype development are discussed.


Subject(s)
Waste Disposal, Fluid , Water Purification , Biological Oxygen Demand Analysis , Humans , Laboratories , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...