Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ambio ; 53(5): 746-763, 2024 May.
Article in English | MEDLINE | ID: mdl-38355875

ABSTRACT

Partnerships in marine monitoring combining Traditional Ecological Knowledge and western science are developing globally to improve our understanding of temporal changes in ecological communities that better inform coastal management practices. A fuller communication between scientists and Indigenous partners about the limitations of monitoring results to identify change is essential to the impact of monitoring datasets on decision-making. Here we present a 5-year co-developed case study from a fish monitoring partnership in northwest Australia showing how uncertainty estimated by Bayesian models can be incorporated into monitoring management indicators. Our simulation approach revealed there was high uncertainty in detecting immediate change over the following monitoring year when translated to health performance indicators. Incorporating credibility estimates into health assessments added substantial information to monitoring trends, provided a deeper understanding of monitoring limitations and highlighted the importance of carefully selecting the way we evaluate management performance indicators.


Subject(s)
Conservation of Natural Resources , Animals , Uncertainty , Bayes Theorem , Australia
2.
PLoS One ; 11(4): e0153184, 2016.
Article in English | MEDLINE | ID: mdl-27049650

ABSTRACT

One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15-30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m-among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs.


Subject(s)
Coral Reefs , Australia
3.
PLoS One ; 10(8): e0136130, 2015.
Article in English | MEDLINE | ID: mdl-26308620

ABSTRACT

Marine fungi are an understudied group of eukaryotic microorganisms characterized by unresolved genealogies and unstable classification. Whereas DNA barcoding via the nuclear ribosomal internal transcribed spacer (ITS) provides a robust and rapid tool for fungal species delineation, accurate classification of fungi is often arduous given the large number of partial or unknown barcodes and misidentified isolates deposited in public databases. This situation is perpetuated by a paucity of cultivable fungal strains available for phylogenetic research linked to these data sets. We analyze ITS barcodes produced from a subsample (290) of 1781 cultured isolates of marine-derived fungi in the Bioresources Library located at the Australian Institute of Marine Science (AIMS). Our analysis revealed high levels of under-explored fungal diversity. The majority of isolates were ascomycetes including representatives of the subclasses Eurotiomycetidae, Hypocreomycetidae, Sordariomycetidae, Pleosporomycetidae, Dothideomycetidae, Xylariomycetidae and Saccharomycetidae. The phylum Basidiomycota was represented by isolates affiliated with the genera Tritirachium and Tilletiopsis. BLAST searches revealed 26 unknown OTUs and 50 isolates corresponding to previously uncultured, unidentified fungal clones. This study makes a significant addition to the availability of barcoded, culturable marine-derived fungi for detailed future genomic and physiological studies. We also demonstrate the influence of commonly used alignment algorithms and genetic distance measures on the accuracy and comparability of estimating Operational Taxonomic Units (OTUs) by the automatic barcode gap finder (ABGD) method. Large scale biodiversity screening programs that combine datasets using algorithmic OTU delineation pipelines need to ensure compatible algorithms have been used because the algorithm matters.


Subject(s)
Algorithms , Biodiversity , DNA Barcoding, Taxonomic , Fungi/isolation & purification , Genetic Variation/genetics , Porifera/microbiology , Seawater/microbiology , Animals , DNA, Ribosomal Spacer/genetics , Fungi/classification , Fungi/genetics , Phylogeny , Sequence Analysis, DNA/methods , Species Specificity
5.
PLoS One ; 8(9): e73800, 2013.
Article in English | MEDLINE | ID: mdl-24040076

ABSTRACT

Twenty-five years of Australian marine bioresources collecting and research by the Australian Institute of Marine Science (AIMS) has explored the breadth of latitudinally and longitudinally diverse marine habitats that comprise Australia's ocean territory. The resulting AIMS Bioresources Library and associated relational database integrate biodiversity with bioactivity data, and these resources were mined to retrospectively assess biogeographic, taxonomic and phylogenetic patterns in cytotoxic, antimicrobial, and central nervous system (CNS)-protective bioactivity. While the bioassays used were originally chosen to be indicative of pharmaceutically relevant bioactivity, the results have qualified ecological relevance regarding secondary metabolism. In general, metazoan phyla along the deuterostome phylogenetic pathway (eg to Chordata) and their ancestors (eg Porifera and Cnidaria) had higher percentages of bioactive samples in the assays examined. While taxonomy at the phylum level and higher-order phylogeny groupings helped account for observed trends, taxonomy to genus did not resolve the trends any further. In addition, the results did not identify any biogeographic bioactivity hotspots that correlated with biodiversity hotspots. We conclude with a hypothesis that high-level phylogeny, and therefore the metabolic machinery available to an organism, is a major determinant of bioactivity, while habitat diversity and ecological circumstance are possible drivers in the activation of this machinery and bioactive secondary metabolism. This study supports the strategy of targeting phyla from the deuterostome lineage (including ancestral phyla) from biodiverse marine habitats and ecological niches, in future biodiscovery, at least that which is focused on vertebrate (including human) health.


Subject(s)
Anti-Infective Agents/pharmacology , Biological Products/pharmacology , Calcium Channel Blockers/pharmacology , Ecology/methods , Enzyme Inhibitors/pharmacology , Animals , Anti-Infective Agents/isolation & purification , Australia , Bacteria/classification , Bacteria/drug effects , Bacteria/growth & development , Bayes Theorem , Biological Products/isolation & purification , Calcium Channel Blockers/isolation & purification , Calcium Channels, N-Type/metabolism , Candida albicans/drug effects , Candida albicans/growth & development , Cell Line, Tumor , Cell Survival/drug effects , Chordata/classification , Chordata/genetics , Chordata/metabolism , Cluster Analysis , Enzyme Inhibitors/isolation & purification , Geography , Humans , Marine Biology/methods , Microbial Sensitivity Tests , Nitric Oxide Synthase Type I/antagonists & inhibitors , Nitric Oxide Synthase Type I/metabolism , Phaeophyceae/chemistry , Phaeophyceae/classification , Phaeophyceae/genetics , Phylogeny , Rhodophyta/chemistry , Rhodophyta/classification , Rhodophyta/genetics
6.
Future Med Chem ; 4(9): 1067-84, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22709251

ABSTRACT

Natural products (NPs) have historically been a fertile source of new drugs for the pharmaceutical industry. However, this once-popular approach has waned considerably over the past two decades as the high-throughput screening of megalibraries comprised mainly of molecules with non-natural (synthetic) motifs has unfolded. Contemporary high-throughput screening libraries contain molecules compliant with physicochemical profiles considered essential for downstream development. Until recently, there was no strategy that aligned NP screening with the same physicochemical profiles. An approach based on Log P has addressed these concerns and, together with advances in isolation, afforded NP leads in timelines compatible with pure compound screening. Concomitant progress related to access of biological resources has provided long-awaited legal certainty to further facilitate NP drug discovery.


Subject(s)
Biological Products , Drug Discovery , Biological Assay
7.
Mar Biotechnol (NY) ; 13(2): 296-304, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20544249

ABSTRACT

Cultivation of sponges is being explored to supply biomaterial for the pharmaceutical and cosmetics industries. This study assesses the impact of various cultivation methods on the microbial community within the sponge Rhopaloeides odorabile during: (1) in situ cultivation under natural environmental conditions, (2) ex situ cultivation in small flow-through aquaria and (3) ex situ cultivation in large mesocosm systems. Principal components analysis of denaturing gradient gel electrophoresis profiles indicated a stable microbial community in sponges cultured in situ (grown in the wild) and in sponges cultured ex situ in small flow-through aquaria over 12 weeks. In contrast, a shift in the microbial community was detected in sponges cultivated ex situ in large mesocosm aquaria for 12 months. This shift included (1) a loss of some stable microbial inhabitants, including members of the Poribacteria, Chloroflexi and Acidobacteria and (2) the addition of new microbes not detected in the wild sponges. Many of these acquired bacteria had highest similarity to known sponge-associated microbes, indicating that the sponge may be capable of actively selecting its microbial community. Alternatively, long-term ex situ cultivation may cause a shift in the dominant microbes that facilitates the growth of the more rare species. The microbial community composition varied between sponges cultivated in mesocosm aquaria with different nutrient concentrations and seawater chemistry, suggesting that these variables play a role in structuring the sponge-associated microbes. The high growth and symbiont stability in R. odorabile cultured in situ confirm that this is the preferred method of aquaculture for this species at this time.


Subject(s)
Bacteria/growth & development , Microbial Consortia , Porifera/microbiology , Animals , Aquaculture , Bacteria/classification , Bacteria/genetics , Bacteriological Techniques , Base Sequence , Biodiversity , DNA, Bacterial , Microbial Interactions , Molecular Sequence Data , Phylogeny , Seawater/chemistry , Seawater/microbiology , Symbiosis
8.
Mar Drugs ; 6(4): 550-77, 2008.
Article in English | MEDLINE | ID: mdl-19172194

ABSTRACT

Microbial marine biodiscovery is a recent scientific endeavour developing at a time when information and other technologies are also undergoing great technical strides. Global visualisation of datasets is now becoming available to the world through powerful and readily available software such as Worldwind, ArcGIS Explorer and Google Earth. Overlaying custom information upon these tools is within the hands of every scientist and more and more scientific organisations are making data available that can also be integrated into these global visualisation tools. The integrated global view that these tools enable provides a powerful desktop exploration tool. Here we demonstrate the value of this approach to marine microbial biodiscovery by developing a geobibliography that incorporates citations on tropical and near-tropical marine microbial natural products research with Google Earth and additional ancillary global data sets. The tools and software used are all readily available and the reader is able to use and install the material described in this article.


Subject(s)
Biological Products , Databases, Bibliographic , Geographic Information Systems , Marine Biology/methods , Animals , Biodiversity , Drug Discovery/methods , Internet , Software , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...