Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 81(1): 435-45, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11423426

ABSTRACT

The influence of the distal pocket conformation on the structure and vibrations of the heme-CO bond in carbonmonoxy myoglobin (MbCO) is investigated by means of hybrid QM/MM calculations based on density functional theory combined with a classical force field. It is shown that the heme-CO structure (QM treated) is quite rigid and not influenced by the distal pocket conformation (MM treated). This excludes any relation between FeCO distortions and the different CO absorptions observed in the infrared spectra of MbCO (A states). In contrast, both the CO stretch frequency and the strength of the CO...His64 interaction are very dependent on the orientation and tautomerization state of His64. Our calculations indicate that the CO...N(epsilon) type of approach does not contribute to the A states, whereas the CO...H-N(epsilon) interaction is the origin of the A(1) and A(3) states, the His64 residue being protonated at N(epsilon). The strength of the CO...His64 interaction is quantified, in comparison with the analogous O(2)...His64 interaction and with the observed changes in the CO stretch frequency. Additional aspects of the CO...His64 interaction and its biological implications are discussed.


Subject(s)
Carbon Monoxide/chemistry , Heme/chemistry , Iron/chemistry , Myoglobin/chemistry , Vibration , Carbon Monoxide/metabolism , Computer Simulation , Heme/metabolism , Histidine/metabolism , Iron/metabolism , Ligands , Models, Molecular , Myoglobin/metabolism , Protein Conformation , Thermodynamics
2.
Protein Sci ; 7(3): 649-66, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9541397

ABSTRACT

Multiple molecular dynamics (MD) simulations of crambin with different initial atomic velocities are used to sample conformations in the vicinity of the native structure. Individual trajectories of length up to 5 ns sample only a fraction of the conformational distribution generated by ten independent 120 ps trajectories at 300 K. The backbone atom conformational space distribution is analyzed using principal components analysis (PCA). Four different major conformational regions are found. In general, a trajectory samples only one region and few transitions between the regions are observed. Consequently, the averages of structural and dynamic properties over the ten trajectories differ significantly from those obtained from individual trajectories. The nature of the conformational sampling has important consequences for the utilization of MD simulations for a wide range of problems, such as comparisons with X-ray or NMR data. The overall average structure is significantly closer to the X-ray structure than any of the individual trajectory average structures. The high frequency (less than 10 ps) atomic fluctuations from the ten trajectories tend to be similar, but the lower frequency (100 ps) motions are different. To improve conformational sampling in molecular dynamics simulations of proteins, as in nucleic acids, multiple trajectories with different initial conditions should be used rather than a single long trajectory.


Subject(s)
Plant Proteins , Protein Conformation , Computer Simulation , Models, Molecular , Motion , Nuclear Magnetic Resonance, Biomolecular
3.
J Phys Chem B ; 102(18): 3586-616, 1998 Apr 30.
Article in English | MEDLINE | ID: mdl-24889800

ABSTRACT

New protein parameters are reported for the all-atom empirical energy function in the CHARMM program. The parameter evaluation was based on a self-consistent approach designed to achieve a balance between the internal (bonding) and interaction (nonbonding) terms of the force field and among the solvent-solvent, solvent-solute, and solute-solute interactions. Optimization of the internal parameters used experimental gas-phase geometries, vibrational spectra, and torsional energy surfaces supplemented with ab initio results. The peptide backbone bonding parameters were optimized with respect to data for N-methylacetamide and the alanine dipeptide. The interaction parameters, particularly the atomic charges, were determined by fitting ab initio interaction energies and geometries of complexes between water and model compounds that represented the backbone and the various side chains. In addition, dipole moments, experimental heats and free energies of vaporization, solvation and sublimation, molecular volumes, and crystal pressures and structures were used in the optimization. The resulting protein parameters were tested by applying them to noncyclic tripeptide crystals, cyclic peptide crystals, and the proteins crambin, bovine pancreatic trypsin inhibitor, and carbonmonoxy myoglobin in vacuo and in crystals. A detailed analysis of the relationship between the alanine dipeptide potential energy surface and calculated protein φ, χ angles was made and used in optimizing the peptide group torsional parameters. The results demonstrate that use of ab initio structural and energetic data by themselves are not sufficient to obtain an adequate backbone representation for peptides and proteins in solution and in crystals. Extensive comparisons between molecular dynamics simulations and experimental data for polypeptides and proteins were performed for both structural and dynamic properties. Energy minimization and dynamics simulations for crystals demonstrate that the latter are needed to obtain meaningful comparisons with experimental crystal structures. The presented parameters, in combination with the previously published CHARMM all-atom parameters for nucleic acids and lipids, provide a consistent set for condensed-phase simulations of a wide variety of molecules of biological interest.

4.
Faraday Discuss ; (93): 239-48, 1992.
Article in English | MEDLINE | ID: mdl-1290934

ABSTRACT

A theoretical approach is employed to study the catalysis of the dihydroxyacetone phosphate (DHAP) to D-glyceraldehyde 3-phosphate (GAP) reaction by the enzyme triose phosphate isomerase (TIM). The conformational change in a loop involved in protecting the active site from solvent is examined by use of X-ray data and molecular dynamics simulations. A mixed quantum-mechanics and molecular mechanics potential is used to determine the energy surface along the reaction path. The calculations address the role of the enzyme in lowering the barrier to reaction and provide a decomposition into specific residue contributions. To obtain a clearer understanding of the electronic effects, the polarization of the substrate carbonyl group by the active site residues is examined and compared with FTIR measurements on the wild-type and mutant forms of the enzyme.


Subject(s)
Computer Simulation , Models, Chemical , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/metabolism , Amino Acid Sequence , Catalysis , Molecular Sequence Data , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...