Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 22(7): 3914-3920, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32016248

ABSTRACT

First principles Density Functional Theory (DFT) hybrid functional PBESOL0 calculations of the atomic and electronic structure of perfect CsPbI3, CsPbBr3 and CsPbCl3 crystals, as well as defective CsPbI3 and CsPbBr3 crystals are performed and discussed. For the perfect structure, decomposition energy into binary compounds (CsX and PbX2) is calculated, and a stability trend of the form CsPbBr3 > CsPbI3 > CsPbCl3 is found. In addition, calculations of the temperature-dependent heat capacity are performed and shown to be in good agreement with experimental data. As far as the defect structure is considered, it is shown that interstitial halide atoms in CsPbBr3 do not tend to form di-halide dumbbells Br2- while such dimers are energetically favoured in CsPbI3, analogous to the well-known H-centers in alkali halides. In the case of CsPbBr3, a loose trimer configuration (Br32-) seems to be energetically preferred. The effects of crystalline symmetry and covalency are discussed, alongside the role of defects in recombination processes.

2.
Phys Chem Chem Phys ; 19(12): 8340-8348, 2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28280805

ABSTRACT

In supercell calculations of defective crystals, it is common to place a point defect or vacancy in the atomic position with the highest possible point symmetry. Then, the initial atomic structure is often arbitrary distorted before its optimization, which searches for the total energy minimum. In this paper, we suggest an alternative approach to the application of supercell models and show that it is necessary to preliminarily analyze the site symmetry of the split Wyckoff positions of the perfect crystal supercell atoms (which will be substituted or removed in defective crystals) and then perform supercell calculations with point defects for different possible site symmetries, to find the energetically most favorable defect configuration, which does not necessarily correspond to the highest site symmetry. Using CeO2 as an example, it is demonstrated that this use of the site symmetry of the removed oxygen atoms in the supercells with vacancies allows us to obtain all the possible atomic and magnetic polaron configurations, and predict which vacancy positions correspond to the lowest formation energies associated with small polarons. We give a simple symmetry based explanation for the existence of controversies in the literature on the nature of the oxygen vacancies in CeO2. In particular, the experimentally observed small polaron formation could arise for oxygen vacancies with the lowest Cs site symmetry, which exist in 3 × 3 × 3 and larger supercells. The results of first principles calculations using a linear combination of atomic orbitals and hybrid exchange-correlation functionals are compared with those from previous studies, obtained using a widely used DFT+U approach.

3.
Phys Chem Chem Phys ; 16(28): 14781-91, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-24922363

ABSTRACT

A new method of theoretical modelling of polyhedral single-walled nanotubes based on the consolidation of walls in the rolled-up multi-walled nanotubes is proposed. Molecular mechanics and ab initio quantum mechanics methods are applied to investigate the merging of walls in nanotubes constructed from the different phases of titania. The combination of two methods allows us to simulate the structures which are difficult to find only by ab initio calculations. For nanotube folding we have used (1) the 3-plane fluorite TiO2 layer; (2) the anatase (101) 6-plane layer; (3) the rutile (110) 6-plane layer; and (4) the 6-plane layer with lepidocrocite morphology. The symmetry of the resulting single-walled nanotubes is significantly lower than the symmetry of initial coaxial cylindrical double- or triple-walled nanotubes. These merged nanotubes acquire higher stability in comparison with the initial multi-walled nanotubes. The wall thickness of the merged nanotubes exceeds 1 nm and approaches the corresponding parameter of the experimental patterns. The present investigation demonstrates that the merged nanotubes can integrate the two different crystalline phases in one and the same wall structure.


Subject(s)
Nanotubes/chemistry , Quantum Theory , Titanium/chemistry , Molecular Structure
4.
Acta Crystallogr A ; 68(Pt 5): 582-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22893241

ABSTRACT

Rod groups (monoperiodic subgroups of the 3-periodic space groups) are considered as a special case of the commensurate line groups (discrete symmetry groups of the three-dimensional objects translationally periodic along a line). Two different factorizations of line groups are considered: (1) The standard L = T(a)F used in crystallography for rod groups; F is a finite system of representatives of line-group decomposition in cosets of 1-periodic translation group T(a); (2) L = ZP used in the theory of line groups; Z is a cyclic generalized translation group and P is a finite point group. For symmorphic line groups (five line-group families of 13 families) the two factorizations are equivalent: the cyclic group Z is a monoperiodic translation group and P is the point group defining the crystal class. For each of the remaining eight families of non-symmorphic line groups the explicit correspondence between rod groups and relevant geometric realisations of the corresponding line groups is established. The settings of rod groups and line groups are taken into account. The results are presented in a table of 75 rod groups listed (in international and factorized notation) by families of the line groups according to the order of the principal axis q (q = 1, 2, 3, 4, 6) of the corresponding isogonal point group.

5.
Phys Chem Chem Phys ; 13(3): 923-6, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21116562

ABSTRACT

One-dimensional confinement effects are modelled within the hybrid HF-DFT LCAO approach considering neutral and single-charged oxygen vacancies in SrTiO(3) ultrathin films. The calculations reveal that confinement effects are surprisingly short-range in this partly covalent perovskite; already for film thickness of 2-3 nm (and we believe, similar size nanoparticles) only the surface-plane defect properties differ from those in the bulk. This includes a pronounced decrease of the defect formation energy (by ∼1 eV), a much deeper defect band level and a noticeable change in the electronic density redistribution at the near-surface vacancy site with respect to that in the bulk. The results also show that the size effect pertains to the interactions between the oxygen vacancy and two neighboring titanium atoms and orientation (parallel or perpendicular to the surface) of the Ti-V(O)-Ti complex. In particular, we predict considerable oxygen vacancy segregation towards the surface.

6.
J Comput Chem ; 30(16): 2645-55, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19382176

ABSTRACT

For the first time the convergence of the phonon frequencies and dispersion curves in terms of the supercell size is studied in ab initio frozen phonon calculations on LiF crystal. Helmann-Feynman forces over atomic displacements are found in all-electron calculations with the localized atomic functions (LCAO) basis using CRYSTAL06 program. The Parlinski-Li-Kawazoe method and FROPHO program are used to calculate the dynamical matrix and phonon frequencies of the supercells. For fcc lattice, it is demonstrated that use of the full supercell space group (including the supercell inner translations) enables to reduce essentially the number of the displacements under consideration. For Hartree-Fock (HF), PBE and hybrid PBE0, B3LYP, and B3PW exchange-correlation functionals the atomic basis set optimization is performed. The supercells up to 216 atoms (3 x 3 x 3 conventional unit cells) are considered. The phonon frequencies using the supercells of different size and shape are compared. For the commensurate with supercell k-points the best agreement of the theoretical results with the experimental data is found for B3PW exchange-correlation functional calculations with the optimized basis set. The phonon frequencies at the most non-commensurate k-points converged for the supercell consisting of 4 x 4 x 4 primitive cells and ensures the accuracy 1-2% in the thermodynamic properties calculated (the Helmholtz free energy, entropy, and heat capacity at the room temperature).

7.
J Phys Condens Matter ; 21(5): 055401, 2009 Feb 04.
Article in English | MEDLINE | ID: mdl-21817299

ABSTRACT

The quantum mechanics-molecular dynamics approach to the simulation of configuration-averaged EXAFS spectra is proposed, and its application is discussed for the example of the Ti K-edge EXAFS spectrum in cubic perovskite SrTiO(3). Proper use of ab initio quantum mechanics allows a number of empirical parameters, used in the molecular dynamics simulation, to be reduced, whereas the molecular dynamics allows us to account for temperature effects. All together, the approach provides a way of accounting for static and dynamic disorder in EXAFS signals from the coordination shells above the first one, where many-atom (multiple-scattering) effects are often important.

8.
J Chem Phys ; 129(21): 214704, 2008 Dec 07.
Article in English | MEDLINE | ID: mdl-19063572

ABSTRACT

Results of first-principles simulations on both orthorhombic and monoclinic phases of CaFeO(3) crystal are presented. The obtained atomic structures are consistent with x-ray diffraction data. The transition from a metallic orthorhombic to a narrow-gap semiconducting monoclinic phase is ascribed to the larger distortion of the Fe-O-Fe bond angle in the latter case. Calculations of Raman and optic active phonon modes at the Gamma point of the Brillouin zone are performed and discussed. The isotopic substitution technique is applied to analyze the vibration modes obtained. The found charge/spin disproportionation is analyzed and compared with available experimental estimates.

9.
J Comput Chem ; 29(13): 2079-87, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18496791

ABSTRACT

LCAO and PW DFT calculations of the lattice constant, bulk modulus, cohesive energy, charge distribution, band structure, and DOS for UN single crystal are analyzed. It is demonstrated that a choice of the uranium atom relativistic effective core potentials considerably affects the band structure and magnetic structure at low temperatures. All calculations indicate mixed metallic-covalent chemical bonding in UN crystal with U5f states near the Fermi level. On the basis of the experience accumulated in UN bulk simulations, we compare the atomic and electronic structure as well as the formation energy for UN(001) surface calculated on slabs of different thickness using both DFT approaches.

10.
Phys Chem Chem Phys ; 7(11): 2346-50, 2005 Jun 07.
Article in English | MEDLINE | ID: mdl-19785120

ABSTRACT

We present the results of ab initio DFT plane wave periodic structure calculations of the LaMnO3 (001) surface. The effects related to three different kinds of pseudopotentials, the slab thickness, magnetic ordering, and surface relaxation are studied and discussed. The antiferromagnetic surface lowest in energy (that is, the spins on Mn ions are parallel in basal plane and antiparallel from plane to plane) has a considerable atomic relaxation up to the fourth plane from the surface. The calculated (Bader) effective charges and the electronic density maps demonstrate a considerable reduction of the Mn atom ionicity on the surface accompanied by a covalent contribution to the Mn-O bonding.

SELECTION OF CITATIONS
SEARCH DETAIL
...