Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Water Res ; 80: 90-8, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25996756

ABSTRACT

In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies.


Subject(s)
Biofilms , Bioreactors/microbiology , Waste Disposal, Fluid/methods , Wastewater/microbiology , Water Purification/methods , Algorithms , Ammonium Compounds/chemistry , Ammonium Compounds/metabolism , Bacteria/growth & development , Bacteria/metabolism , Biomass , Kinetics , Models, Theoretical , Oxidation-Reduction , Oxygen/chemistry , Oxygen/metabolism , Wastewater/chemistry
3.
An Acad Bras Cienc ; 82(1): 109-26, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20209247

ABSTRACT

Ion-specific interactions between two colloidal particles are calculated using a modified Poisson-Boltzmann (PB) equation and Monte Carlo (MC)simulations. PB equations present good results of ionic concentration profiles around a macroion, especially for salt solutions containing monovalent ions. These equations include not only electrostatic interactions, but also dispersion potentials originated from polarizabilities of ions and proteins. This enables us to predict ion-specific properties of colloidal systems. We compared results obtained from the modified PB equation with those from MC simulations and integral equations. Phase diagrams and osmotic second virial coefficients are also presented for different salt solutions at different pH and ionic strengths, in agreement with the experimental results observed Hofmeister effects. In order to include the water structure and hydration effect, we have used an effective interaction obtained from molecular dynamics of each ion and a hydrophobic surface combined with PB equation. The method has been proved to be efficient and suitable for describing phenomena where the water structure close to the interface plays an essential role. Important thermodynamic properties related to protein aggregation, essential in biotechnology and pharmaceutical industries, can be obtained from the method shown here.


Subject(s)
Colloids/chemistry , Hydrophobic and Hydrophilic Interactions , Ions/chemistry , Proteins/chemistry , Thermodynamics , Models, Chemical , Monte Carlo Method
4.
An. acad. bras. ciênc ; 82(1): 109-126, Mar. 2010. graf
Article in English | LILACS | ID: lil-539319

ABSTRACT

Ion-specific interactions between two colloidal particles are calculated using a modified Poisson-Boltzmann (PB)equationandMonteCarlo(MC)simulations. PBequationspresentgoodresultsofionicconcentration profiles around a macroion, especially for salt solutions containing monovalent ions. These equations include not only electrostatic interactions, but also dispersion potentials originated from polarizabilities of ions and proteins. This enables us to predict ion-specific properties of colloidal systems. We compared results obtained from the modified PB equation with those from MC simulations and integral equations. Phase diagrams and osmotic second virial coefficients are also presented for different salt solutions at different pH and ionic strengths, in agreement with the experimental results observed Hofmeister effects. In order to include the water structure and hydration effect, we have used an effective interaction obtained from molecular dynamics of each ion and a hydrophobic surface combined with PB equation. The method has been proved to be efficient and suitable for describing phenomena where the water structure close to the interface plays an essential role. Important thermodynamic properties related to protein aggregation, essential in biotechnology and pharmaceutical industries, can be obtained from the method shown here.


Interações íon-específicas (dependentes do tipo de íon presente em solução) entre duas partículas coloidais são calculadas usando a equação de Poisson-Boltzmann (PB) modificada e simulações de Monte Carlo (MC). As equações de PB apresentam bons resultados de perfis de concentração nas proximidades de um macro-íon, principalmente para soluções salinas contendo íons monovalentes. Estas equações incluem não só interações eletrostáticas, mas também potenciais de dispersão, que têm origem nas polarizabilidades de íons e proteínas, permitindo a predição de propriedades íon-específicas de sistemas coloidais. Os resultados obtidos a partir da equação de PB modificada são comparados com outros obtidos por simulação de MC e por equações integrais. Diagramas de fase e o segundo coeficiente de virial são obtidos para diferentes sais e diferentes valores de pH e força iônica, em concordância com efeitos de Hofmeister observados experimentalmente. Interações efetivas obtidas por dinâmica molecular entre cada íon e uma superfície hidrofóbica foram incluídas na equação de PB, a fim de considerar a estrutura da água e efeitos de hidratação. O método mostrou-se eficiente e adequado para descrever fenômenos onde a estrutura da água nas proximidades da interface desempenha papel essencial. Propriedades termodinâmicas importantes, relacionadas com a agregação de proteínas, essenciais em biotecnologia e indústrias farmacêuticas, podem ser obtidas pelo método aqui apresentado.


Subject(s)
Colloids/chemistry , Hydrophobic and Hydrophilic Interactions , Ions/chemistry , Proteins/chemistry , Thermodynamics , Models, Chemical , Monte Carlo Method
5.
J Hazard Mater ; 164(2-3): 1325-34, 2009 May 30.
Article in English | MEDLINE | ID: mdl-19081185

ABSTRACT

Remediation of sandy soils contaminated with diesel oil was investigated in bench-scale experiments. Surfactant solution, regular foams and colloidal gas aphrons were used as remediation fluids. An experimental design technique was used to investigate the effect of relevant process variables on remediation efficiency. Soils prepared with different average particle sizes (0.04-0.12 cm) and contaminated with different diesel oil contents (40-80 g/kg) were used in experiments conducted with remediation fluids. A mathematical model was proposed allowing for the determination of oil removal rate-constant (k(v)) and oil content remaining in the soil after remediation (C(of)) as well as estimation of the percentage of oil removed. Oil removal efficiencies obtained under the central experimental design conditions were 96%, 88% and 35% for aphrons, regular foams and surfactant solutions, respectively. High removal efficiencies were obtained using regular foams and aphrons, demanding small amounts of surfactant.


Subject(s)
Environmental Restoration and Remediation/methods , Gasoline , Soil Pollutants/isolation & purification , Surface-Active Agents , Kinetics , Models, Theoretical , Particle Size , Silicon Dioxide , Soil , Solutions
6.
Phys Chem Chem Phys ; 9(24): 3174-80, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17612740

ABSTRACT

The double layer forces between spherical colloidal particles, according to the Poisson-Boltzmann (PB) equation, have been accurately calculated in the literature. The classical PB equation takes into account only the electrostatic interactions, which play a significant role in colloid science. However, there are at, and above, biological salt concentrations other non-electrostatic ion specific forces acting that are ignored in such modelling. In this paper, the electrostatic potential profile and the concentration profile of co-ions and counterions near charged surfaces are calculated. These results are obtained by solving the classical PB equation and a modified PB equation in bispherical coordinates, taking into account the van der Waals dispersion interactions between the ions and both surfaces. Once the electrostatic potential is known we calculate the double layer force between two charged spheres. This is the first paper that solves the modified PB equation in bispherical coordinates. It is also the first time that the finite volume method is used to solve the PB equation in bispherical coordinates. This method divides the calculation domain into a certain number of sub-domains, where the physical law of conservation is valid, and can be readily implemented. The finite volume method is implemented for several geometries and when it is applied to solve PB equations presents low computational cost. The proposed method was validated by comparing the numerical results for the classical PB calculations with previous results reported in the literature. New numerical results using the modified PB equation successfully predicted the ion specificity commonly observed experimentally.

SELECTION OF CITATIONS
SEARCH DETAIL
...