Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 375(1-3): 274-91, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17331564

ABSTRACT

The implementation of the European Water Framework Directive requires new tools for predicting the effect of expected measures taken in the watershed on water quality at the scale of large regional river systems. In the Seine basin, four models, developed in a research context, have been chained to each other to simulate water quality and biogeochemical functioning of the hydrosystem from headwater streams to the coastal marine area. All four models are based on a similar deterministic approach and share a common description of the biogeochemical processes, allowing them to exchange information. Each model differently represents the hydro-sedimentological processes, and uses different time and space resolution, in order to tackle with the specific problematic of each sub-system. This cascade of models has been used for testing a prospective scenario of water resources management at the horizon of 2015, established by Water Authorities of the Seine-Normandy district. The simulation predicts a general improvement of water quality concerning those variables linked to point sources of pollution (ammonium, oxygen, phosphate), even if, locally, this improvement can be insufficient for meeting the expected quality standards. The predicted improvement of the quality of the Seine River downstream from Paris and its estuary is large. However, the predicted very significant drop of phosphate contamination, although beneficial for limiting the problems of coastal marine eutrophication, does not lead to a significant control of phytoplankton development in the rivers upstream from Paris. The simulation also predicts a general increase in nitrate contamination mainly linked to diffuse sources from agricultural areas.


Subject(s)
Models, Theoretical , Rivers/chemistry , Water Supply/standards , France , Water Pollution/analysis
2.
Sci Total Environ ; 375(1-3): 69-79, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17331565

ABSTRACT

Nitrates fluxes in the Grand Morin basin (1200 km(2)), that is subjected to intense agricultural pressure, are considered using in-stream observations (around 250 sampling days over 5 years) and physically based simulations using the CAWAQS model (CAtchment WAter Quality Simulator). In-stream nitrate concentration averaged 6 mg N L(-1), increasing by approximately 0.2 mg N L(-1) yr(-1) around this value (period 1991-1996). Our results show that, over the period of 1991-1996, the differences between in-stream observed nitrate concentrations and simulated nitrate concentrations result from nitrate losses at the basin scale. These losses are due to denitrification by transfer through wetlands, alluvial plains, the hyporheic zone, and by benthic processes in rivers. A mean annual mass balance at the basin scale indicates that 40% of the infiltration flux (3360 kg N km(-2) yr(-1)) is removed from the system via the river network, 40% is stored in aquifers and 20% is lost by denitrification (period 1991-1996).


Subject(s)
Environmental Monitoring/methods , Geography/methods , Models, Theoretical , Nitrates/analysis , Water Pollutants, Chemical/analysis , France
3.
Sci Total Environ ; 375(1-3): 98-109, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17234256

ABSTRACT

Periphytic biomass has an important influence on the water quality of many shallow streams. The purpose of this paper is to synthesize the knowledge obtained on periphyton during the PIREN Seine research program. Periphyton was sampled using chl a measurements by acetone extraction and oxygen measurements with microelectrodes. The experiments reveal the presence of an important fixed biomass ranging between 123 and 850 mgchl a m(-2) and the mean gross production (photosynthesis) is shown to range between 180 and 315 mgC m(-2) h(-1). An independent approach was performed using the ProSe model, which simulates transport and biogeochemical processes in 22 km of the Grand Morin stream. A strong agreement between in situ measurements and the model results was obtained. The gross production obtained using ProSe is 220 mgC m(-2) h(-1) for the periphyton, which matches the experimental data. Although the net photosynthetic activity of the phytoplankton (0.84 gC gC(-1) d(-1)) is higher than the periphytic one (0.33 gC gC(-1) d(-1)), the absolute periphytic activity is greater since the mean biomass (3.4 gC m(-)(2)) is 10 times higher than the phytoplanktonic one (0.3 gC m(-2)), due to the short residence time of the water body (1.5d).


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Rivers , Bacteria/growth & development , Biomass , Eukaryota/growth & development , France , Oxygen/analysis , Photosynthesis , Phytoplankton/growth & development
4.
Sci Total Environ ; 375(1-3): 140-51, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17240425

ABSTRACT

To achieve the objectives of the European Water Framework Directive (EWFD), the Seine basin Water Authority has constructed a number of prospective scenarios forecasting the impact of planned investments in water quality. Paris and its suburbs were given special attention because of their impact on the river Seine. Paris sewer system and overflow control is of major concern in future management plans. The composition and fate of the urban effluents have been characterized through numerous in situ samplings, laboratory experiments and modelling studies. The PROSE model was especially designed to simulate the impact on the river of both permanent dry-weather effluents and of highly transient Combined Sewer Overflow (CSO). It was also used to represent the impact of Paris at large spatial and temporal scales. In addition to immediate effects on oxygen levels, heavy particulate organic matter loads that settle downstream of the outlets contribute to permanent oxygen consumption. Until the late 90s, the 50 km long reach of the Seine inside Paris was permanently affected by high oxygen consumption accounting for 112% of the flux upstream of the city. 20% of this demand resulted from CSO. However, the oxygenation of the system is strong due to high phytoplankton activity. As expected, the model results predict a reduction of both permanent dry-weather effluents and CSOs in the future that will greatly improve the oxygen levels (concentrations higher than 7.3 mgO(2) L(-1), 90% of the time instead of 4.0 mgO(2) L(-1) in the late 90s). The main conclusion is that, given the spatial and temporal extent of the impact of many CSOs, water quality models should take into account the CSOs in order to be reliable.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Supply/standards , France , Weather
5.
Environ Pollut ; 146(1): 241-56, 2007 Mar.
Article in English | MEDLINE | ID: mdl-16934380

ABSTRACT

The objective of this work is to combine several approaches to better understand nitrate fate in the Grand Morin aquifers (2700 km(2)), part of the Seine basin. cawaqs results from the coupling of the hydrogeological model newsam with the hydrodynamic and biogeochemical model of river ProSe. cawaqs is coupled with the agronomic model Stics in order to simulate nitrate migration in basins. First, kriging provides a satisfactory representation of aquifer nitrate contamination from local observations, to set initial conditions for the physically based model. Then associated confidence intervals, derived from data using geostatistics, are used to validate cawaqs results. Results and evaluation obtained from the combination of these approaches are given (period 1977-1988). Then cawaqs is used to simulate nitrate fate for a 20-year period (1977-1996). The mean nitrate concentrations increase in aquifers is 0.09 mgN L(-1)yr(-1), resulting from an average infiltration flux of 3500 kgN.km(-2)yr(-1).


Subject(s)
Computer Simulation , Nitrates/analysis , Water Pollution/analysis , Water Supply/analysis , France , Geography , Geologic Sediments , Models, Theoretical , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...