Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 33(11): 7100-7119, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36790738

ABSTRACT

This study investigated how proactive and reactive cognitive control processing in the brain was associated with habitual sleep health. BOLD fMRI data were acquired from 81 healthy adults with normal sleep (41 females, age 20.96-39.58 years) during a test of cognitive control (Not-X-CPT). Sleep health was assessed in the week before MRI scanning, using both objective (actigraphy) and self-report measures. Multiple measures indicating poorer sleep health-including later/more variable sleep timing, later chronotype preference, more insomnia symptoms, and lower sleep efficiency-were associated with stronger and more widespread BOLD activations in fronto-parietal and subcortical brain regions during cognitive control processing (adjusted for age, sex, education, and fMRI task performance). Most associations were found for reactive cognitive control activation, indicating that poorer sleep health is linked to a "hyper-reactive" brain state. Analysis of time-on-task effects showed that, with longer time on task, poorer sleep health was predominantly associated with increased proactive cognitive control activation, indicating recruitment of additional neural resources over time. Finally, shorter objective sleep duration was associated with lower BOLD activation with time on task and poorer task performance. In conclusion, even in "normal sleepers," relatively poorer sleep health is associated with altered cognitive control processing, possibly reflecting compensatory mechanisms and/or inefficient neural processing.


Subject(s)
Brain , Sleep Wake Disorders , Female , Humans , Adult , Young Adult , Brain/diagnostic imaging , Brain/physiology , Sleep/physiology , Cognition/physiology , Executive Function/physiology , Magnetic Resonance Imaging
2.
Clin Interv Aging ; 16: 1485-1501, 2021.
Article in English | MEDLINE | ID: mdl-34408409

ABSTRACT

PURPOSE: The aim was to examine the effect of a 5-year exercise intervention at different intensities on brain structure in older adults from the general population partaking in the randomized controlled trial Generation 100 Study. PARTICIPANTS AND METHODS: Generation 100 Study participants were invited to a longitudinal neuroimaging study before randomization. A total of 105 participants (52 women, 70-77 years) volunteered. Participants were randomized into supervised exercise twice a week performing high intensity interval training in 4×4 intervals at ~90% peak heart rate (HIIT, n = 33) or 50 minutes of moderate intensity continuous training at ~70% of peak heart rate (MICT, n = 24). The control group (n = 48) followed the national physical activity guidelines of ≥30 min physical activity daily. Brain MRI at 3T, clinical and cardiorespiratory fitness (CRF), measured as peak oxygen uptake, were collected at baseline, and after 1, 3, and 5 years of intervention. Brain volumes and cortical thickness were derived from T1 weighted 3D MRI data using FreeSurfer. The effect of HIIT or MICT on brain volumes over time was investigated with linear mixed models, while linear regressions examined the effect of baseline CRF on brain volumes at later time points. RESULTS: Adherence in each group was between 79 and 94% after 5 years. CRF increased significantly in all groups during the first year. Compared to controls, the HIIT group had significantly increased hippocampal atrophy located to CA1 and hippocampal body, though within normal range, and the MICT group greater thalamic atrophy. No other effects of intervention group were found. CRF across the intervention was not associated with brain structure, but CRF at baseline was positively associated with cortical volume at all later time points. CONCLUSION: Higher baseline CRF reduced 5-year cortical atrophy rate in older adults, while following physical activity guidelines was associated with the lowest hippocampal and thalamic atrophy rates.


Subject(s)
Cardiorespiratory Fitness , High-Intensity Interval Training , Aged , Brain/diagnostic imaging , Exercise , Exercise Therapy , Female , Humans , Male
3.
Cell Rep ; 34(3): 108658, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33472067

ABSTRACT

The hippocampus and the entorhinal cortex are considered the main brain structures for allocentric representation of the external environment. Here, we show that the amygdala and the ventral visual stream are involved in allocentric representation. Thirty-one young men explored 35 virtual environments during high-resolution functional magnetic resonance imaging (fMRI) of the medial temporal lobe (MTL) and were subsequently tested on recall of the allocentric pattern of the objects in each environment-in other words, the positions of the objects relative to each other and to the outer perimeter. We find increasingly unique brain activation patterns associated with increasing allocentric accuracy in distinct neural populations in the perirhinal cortex, parahippocampal cortex, fusiform cortex, amygdala, hippocampus, and entorhinal cortex. In contrast to the traditional view of a hierarchical MTL network with the hippocampus at the top, we demonstrate, using recently developed graph analyses, a hierarchical allocentric MTL network without a main connector hub.


Subject(s)
Amygdala/metabolism , Magnetic Resonance Imaging/methods , Temporal Lobe/physiology , Vision, Ocular/physiology , Humans , Male
4.
Front Hum Neurosci ; 10: 207, 2016.
Article in English | MEDLINE | ID: mdl-27199724

ABSTRACT

Uncertainty is recognized as an important component in distress, which may elicit impulsive behavior in patients with borderline personality disorder (BPD). These patients are known to be both impulsive and distress intolerant. The present study explored the connection between outcome uncertainty and impulsivity in BPD. The prediction was that cue primes, which provide incomplete information of subsequent target stimuli, led BPD patients to overrate the predictive value of these cues in order to reduce distress related to outcome uncertainty. This would yield dysfunctional impulsive behavior detected as commission errors to incorrectly primed targets. We hypothesized that dysfunctional impulsivity would be accompanied by aberrant brain activity in the right insula and anterior cingulate cortex (ACC), previously described to be involved in uncertainty processing, attention-/cognitive control and BPD pathology. 14 female BPD patients and 14 healthy matched controls (HCs) for comparison completed a Posner task during fMRI at 3T. The task was modified to limit the effect of spatial orientation and enhance the effect of conscious expectations. Brain activity was monitored in the priming phase where the effects of cue primes and neutral primes were compared. As predicted, the BPD group made significantly more commission errors to incorrectly primed targets than HCs. Also, the patients had faster reaction times to correctly primed targets relative to targets preceded by neutral primes. The BPD group had decreased activity in the right mid insula and increased activity in bilateral dorsal ACC during cue primes. The results indicate that strong expectations induced by cue primes led to reduced uncertainty, increased response readiness, and ultimately, dysfunctional impulsivity in BPD patients. We suggest that outcome uncertainty may be an important component in distress related impulsivity in BPD.

5.
Hippocampus ; 25(1): 119-35, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25155295

ABSTRACT

In rodents representations of environmental positions follow a granularity gradient along the hippocampal and entorhinal anterior-posterior axis; with fine-grained representations most posteriorly. To investigate if such a gradient exists in humans, functional magnetic resonance imaging data were acquired during virtual environmental learning of the objects' positions and the association between the objects and room geometry. The Objects-room geometry binding led to increased activation throughout the hippocampus and in the posterior entorhinal cortex. Within subject comparisons related specifically to the level of spatial granularity of the object position encoding showed that activation in the posterior and intermediate hippocampus was highest for fine-grained and medium-grained representations, respectively. In addition, the level of fine granularity in the objects' positions encoded between subjects correlated with posterior hippocampal activation. For the anterior hippocampus increased activation was observed for coarse-grained representations as compared to failed encoding. Activation in anterior hippocampus correlated with the number of environments in which the objects positions were remembered when permitting a coarse representation of positions. In the entorhinal cortex, activation in the posterior part correlated with level of fine granularity for the objects' positions encoded between subjects, and activation in the posterior and intermediate entorhinal cortex increased for medium-grained representations. This demonstrates directly that positional granularity is represented in a graded manner along the anterior-posterior axis of the human hippocampus, and to some extent entorhinal cortex, with most fine-grained positional representations posteriorly.


Subject(s)
Brain Mapping/methods , Entorhinal Cortex/physiology , Hippocampus/physiology , Spatial Learning/physiology , Adolescent , Adult , Environment , Humans , Magnetic Resonance Imaging , Male , Young Adult
6.
J Cogn Neurosci ; 25(11): 1908-25, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23806136

ABSTRACT

Representing an environment globally, in a coarse way, and locally, in a fine-grained way, are two fundamental aspects of how our brain interprets the world that surrounds us. The neural correlates of these representations have not been explicated in humans. In this study we used fMRI to investigate these correlates and to explore a possible functional segregation in the hippocampus and parietal cortex. We hypothesized that processing a coarse, global environmental representation engages anterior parts of these regions, whereas processing fine-grained, local environmental information engages posterior parts. Participants learned a virtual environment and then had to find their way during fMRI. After scanning, we assessed strategies used and representations stored. Activation in the hippocampal head (anterior) was related to the multiple distance and global direction judgments and to the use of a coarse, global environmental representation during navigation. Activation in the hippocampal tail (posterior) was related to both local and global direction judgments and to using strategies like number of turns. A structural shape analysis showed that the use of a coarse, global environmental representation was related to larger right hippocampal head volume and smaller right hippocampal tail volume. In the inferior parietal cortex, a similar functional segregation was observed, with global routes represented anteriorly and fine-grained route information such as number of turns represented posteriorly. In conclusion, moving from the anterior to the posterior hippocampus and inferior parietal cortex reflects a shift from processing coarse global environmental representations to processing fine-grained, local environmental representations.


Subject(s)
Environment , Hippocampus/physiology , Adult , Behavior/physiology , Data Interpretation, Statistical , Hippocampus/anatomy & histology , Humans , Image Processing, Computer-Assisted , Learning/physiology , Magnetic Resonance Imaging , Male , Orientation/physiology , Parietal Lobe/physiology , Psychomotor Performance/physiology , Space Perception/physiology , Surveys and Questionnaires , Temporal Lobe/physiology , User-Computer Interface , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...