Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(13): 9472-9481, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36935644

ABSTRACT

In this article, we present the results of developing a model based on an RFR machine learning method using the ISIDA fragment descriptors for predicting the 11B NMR chemical shift of BODIPYs. The model is freely available at https://ochem.eu/article/146458. The model demonstrates the high quality of predicting the 11B NMR chemical shift (RMSE, 5CV (FINALE training set) = 0.40 ppm, RMSE (TEST set) = 0.14 ppm). In addition, we compared the "cost" and the user-friendliness for calculations using the quantum-chemical model with the DFT/GIAO approach. The 11B NMR chemical shift prediction accuracy (RMSE) of the model considered is more than three times higher and tremendously faster than the DFT/GIAO calculations. As a result, we provide a convenient tool and database that we collected for all researchers, that allows them to predict the 11B NMR chemical shift of boron-containing dyes. We believe that the new model will make it easier for researchers to correctly interpret the 11B NMR chemical shifts experimentally determined and to select more optimal conditions to perform an NMR experiment.

2.
Pharmaceutics ; 15(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36678855

ABSTRACT

Understanding of the nucleation process's fundamental principles in saturated solutions is an urgent task. To do this task, it is necessary to control the formation of polymorphic forms of biologically active compounds. In certain cases, a compound can exist in a single polymorphic form, but have several solvates which can appear in different crystal forms, depending on the medium and conditions of formation, and show different pharmaceutical activity. In the present paper, we report on the analysis of Arbidol conformational preferences in two solvents of different polarities-deuterated chloroform and dimethyl sulfoxide-at 25 °C, using the 2D NOESY method. The Arbidol molecule has various solvate forms depending on the molecular conformation. The method based on the nuclear Overhauser effect spectroscopy was shown to be efficient in the analysis of complex heterocyclic compounds possessing conformation-dependent pseudo-polymorphism. It is one of the types of polymorphism observed in compounds forming crystal solvates. Combined use of NMR methods and X-ray data allowed determining of conformer populations of Arbidol in CDCl3 and DMSO-d6 which were found to be 8/92% and 37/63%, respectively. The preferred conformation in solution is the same that appears in stable crystal solvates of Arbidol.

SELECTION OF CITATIONS
SEARCH DETAIL
...