Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ultrasound Med Biol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38760280

ABSTRACT

BACKGROUND: Acoustically activated perfluoropropane droplets (PD) formulated from lipid encapsulated microbubble preparations produce a delayed myocardial contrast enhancement that preferentially highlights the infarct zones (IZ). Since activation of PDs may be temperature sensitive, it is unclear what effect body temperature (BT) has on acoustic activation (AA). OBJECTIVE: We sought to determine whether the microvascular retention and degree of myocardial contrast intensity (MCI) would be affected by BT at the time of intravenous injection. METHODS: We administered intravenous (IV) PD in nine rats following 60 min of ischemia followed by reperfusion. Injections in these rats were given at temperatures above and below 36.5°C, with high MI activation in both groups at 3 or 6 min following IV injection (IVI). In six additional rats (three in each group), IV PDs were given only at one temperature (<36.5°C or ≥36.5°C), permitting a total of 12 comparisons of different BT. Differences in background subtracted MCI at 3-6 min post-injection were compared in the infarct zone (IZ) and remote zone (RZ). Post-mortem lung hematoxylin and eosin (H&E) staining was performed to assess the effect potential thermal activation on lung tissue. RESULTS: Selective MCI within the IZ was observed in 8 of 12 rats who received IVI of PDs at <36.5°C, but none of the 12 rats who had IVI at the higher temperature (p < 0.0001). Absolute MCI following droplet activation was significantly higher in both the IZ and RZ when given at the lower BT. H&E indicated significant red blood extravasation in 5/7 rats who had had IV injections at higher BT, and 0/7 rats who had IV PDs at <36.5°C. CONCLUSIONS: Selective IZ enhancement with AA of intravenous PDs is possible, but temperature sensitive. Thermal activation appears to occur when PDs are given at higher temperatures, preventing AA, and increasing unwanted bioeffects.

2.
J Ultrasound Med ; 43(6): 1063-1080, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38440926

ABSTRACT

BACKGROUND: Acoustically activatable perfluoropropane droplets (PD) can be formulated from commercially available microbubble preparations. Diagnostic transthoracic ultrasound frequencies have resulted in acoustic activation (AA) predominately within myocardial infarct zones (IZ). OBJECTIVE: We hypothesized that the AA area following acute coronary ischemia/reperfusion (I/R) would selectively enhance the developing scar zone, and target bioeffects specifically to this region. METHODS: We administered intravenous PD in 36 rats and 20 pigs at various stages of myocardial scar formation (30 minutes, 1 day, and 7 days post I/R) to determine what effect infarct age had on the AA within the IZ. This was correlated with histology, myeloperoxidase activity, and tissue nitrite activity. RESULTS: The degree of AA within the IZ in rats was not associated with collagen content, neutrophil infiltration, or infarct age. AA within 24 hours of I/R was associated with increased nitric oxide utilization selectively within the IZ (P < .05 compared with remote zone). The spatial extent of AA in pigs correlated with infarct size only when performed before sacrifice at 7 days (r = .74, P < .01). CONCLUSIONS: Acoustic activation of intravenous PD enhances the developing scar zone following I/R, and results in selective tissue nitric oxide utilization.


Subject(s)
Fluorocarbons , Myocardial Infarction , Animals , Fluorocarbons/pharmacokinetics , Swine , Rats , Myocardial Infarction/diagnostic imaging , Male , Contrast Media/pharmacokinetics , Nanoparticles , Rats, Sprague-Dawley , Myocardium/metabolism , Disease Models, Animal , Myocardial Reperfusion Injury/diagnostic imaging , Microbubbles , Female , Ultrasonography/methods
3.
Ultrasound Med Biol ; 48(11): 2322-2334, 2022 11.
Article in English | MEDLINE | ID: mdl-36050231

ABSTRACT

Perfluoropropane droplets (PDs) cross endothelial barriers and can be acoustically activated for selective myocardial extravascular enhancement following intravenous injection (IVI). Our objective was to determine how to optimally activate extravascular PDs for transthoracic ultrasound-enhanced delineation of a developing scar zone (DSZ). Ultrafast-frame-rate microscopy was conducted to determine the effect of pulse sequence on the threshold of bubble formation from PDs. In vitro studies were subsequently performed at different flow rates to determine acoustic activation and inertial cavitation thresholds for a PD infusion using multipulse fundamental non-linear or single-pulse harmonic imaging. IVIs of PDs were given in 9 rats and 10 pigs following prolonged left anterior descending ischemia to detect and quantify PD kinetics within the DSZ. A multipulse sequence had a lower myocardial index threshold for acoustic activation by ultrafast-frame-rate microscopy. Acoustic activation was observed at a myocardial index ≥0.4 below the inertial cavitation threshold for both pulse sequences. In rats, confocal microscopy and serial acoustic activation imaging detected higher droplet presence (relative to remote regions) within the DSZ at 3 min post-IVI. Transthoracic high-mechanical-index impulses with fundamental non-linear imaging in pigs at this time post-IVI resulted in selective contrast enhancement within the DSZ.


Subject(s)
Fluorocarbons , Myocardial Infarction , Acoustics , Animals , Contrast Media , Microbubbles , Rats , Swine
4.
Ultrasound Med Biol ; 40(7): 1545-53, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24613551

ABSTRACT

Although guided high-mechanical-index (MI) impulses from a diagnostic ultrasound transducer have been used in preclinical studies to dissolve coronary arterial and microvascular thrombi in the presence of intravenously infused microbubbles, it is possible that pulse durations (PDs) longer than that used for diagnostic imaging may further improve the effectiveness of this approach. By use of an established in vitro model flow system, a total of 90 occlusive porcine arterial thrombi (thrombus age: 3-4 h) within a vascular mimicking system were randomized to 10-min treatments with two different PDs (5 and 20 µs) using a Philips S5-1 transducer (1.6-MHz center frequency) at a range of MIs (from 0.2 to 1.4). All impulses were delivered in an intermittent fashion to permit microbubble replenishment within the thrombosed vessel. Diluted lipid-encapsulated microbubbles (0.5% Definity) were infused during the entire treatment period. A tissue-mimicking phantom 5 cm thick was placed between the transducer and thrombosed vessel to mimic transthoracic attenuation. Two 20-MHz passive cavitation detection systems were placed confocal to the insonified vessel to assess for inertial cavitational activity. Percentage thrombus dissolution was calculated by weighing the thrombi before and after each treatment. Percentage thrombus dissolution was significantly higher with a 20-µs PD already at the 0.2 and 0.4 MI therapeutic impulses (54 ± 12% vs. 33 ± 17% and 54 ± 22% vs. 34 ± 17%, p < 0.05 compared with the 5-µs PD group, respectively), and where passive cavitation detection systems detected only low intensities of inertial cavitation. At higher MI settings and 20-µs PDs, percentage thrombus dissolution decreased most likely from high-intensity cavitation shielding of the thrombus. Slightly prolonging the PD on a diagnostic transducer improves the degree of sonothrombolysis that can be achieved without fibrinolytic agents at a lower mechanical index.


Subject(s)
Carotid Artery Thrombosis/therapy , Fluorocarbons/therapeutic use , High-Intensity Focused Ultrasound Ablation/instrumentation , Transducers , Ultrasonography/instrumentation , Animals , Carotid Artery Thrombosis/diagnostic imaging , Contrast Media/therapeutic use , Equipment Design , Equipment Failure Analysis , High-Energy Shock Waves , Phantoms, Imaging , Swine , Treatment Outcome
5.
PLoS One ; 8(7): e69780, 2013.
Article in English | MEDLINE | ID: mdl-23922797

ABSTRACT

Ultrasound induced cavitation has been explored as a method of dissolving intravascular and microvascular thrombi in acute myocardial infarction. The purpose of this study was to determine the type of cavitation required for success, and whether longer pulse duration therapeutic impulses (sustaining the duration of cavitation) could restore both microvascular and epicardial flow with this technique. Accordingly, in 36 hyperlipidemic atherosclerotic pigs, thrombotic occlusions were induced in the mid-left anterior descending artery. Pigs were then randomized to either a) ½ dose tissue plasminogen activator (0.5 mg/kg) alone; or same dose plasminogen activator and an intravenous microbubble infusion with either b) guided high mechanical index short pulse (2.0 MI; 5 usec) therapeutic ultrasound impulses; or c) guided 1.0 mechanical index long pulse (20 usec) impulses. Passive cavitation detectors indicated the high mechanical index impulses (both long and short pulse duration) induced inertial cavitation within the microvasculature. Epicardial recanalization rates following randomized treatments were highest in pigs treated with the long pulse duration therapeutic impulses (83% versus 59% for short pulse, and 49% for tissue plasminogen activator alone; p<0.05). Even without epicardial recanalization, however, early microvascular recovery occurred with both short and long pulse therapeutic impulses (p<0.005 compared to tissue plasminogen activator alone), and wall thickening improved within the risk area only in pigs treated with ultrasound and microbubbles. We conclude that although short pulse duration guided therapeutic impulses from a diagnostic transducer transiently improve microvascular flow, long pulse duration therapeutic impulses produce sustained epicardial and microvascular re-flow in acute myocardial infarction.


Subject(s)
Myocardial Infarction/therapy , Thrombolytic Therapy/methods , Ultrasonic Therapy/methods , Animals , Swine
6.
Article in English | MEDLINE | ID: mdl-23549527

ABSTRACT

Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information. This paper presents a prototype of a 2-D cavitation imager capable of producing images of the dominant cavitation state and activity level in a region of interest. Similar to PCDs, the cavitation imaging described here is based on the spectral analysis of the acoustic signal radiated by the cavitating microbubbles: ultraharmonics of the excitation frequency indicate stable cavitation, whereas elevated noise bands indicate inertial cavitation; the absence of both indicates moderate oscillations. The prototype system is a modified commercially available ultrasound scanner with a sector imaging probe. The lateral resolution of the system is 1.5 mm at a focal depth of 3 cm, and the axial resolution is 3 cm for a therapy pulse length of 20 µs. The maximum frame rate of the prototype is 2 Hz. The system has been used for assessing and mapping the relative importance of the different cavitation states of a microbubble contrast agent. In vitro (tissue-mimicking flow phantom) and in vivo (heart, liver, and brain of two swine) results for cavitation states and their changes as a function of acoustic amplitude are presented.


Subject(s)
Image Processing, Computer-Assisted/methods , Microbubbles , Signal Processing, Computer-Assisted , Ultrasonography/methods , Animals , Humans , Liver/diagnostic imaging , Mechanical Thrombolysis/methods , Phantoms, Imaging , Swine , Temporal Bone/diagnostic imaging
7.
Ultrasound Med Biol ; 37(2): 280-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21208727

ABSTRACT

The purpose of this study was to examine the effects of applied mechanical index, incident angle, attenuation and thrombus age on the ability of 2-D vs. 3-D diagnostic ultrasound and microbubbles to dissolve thrombi. A total of 180 occlusive porcine arterial thrombi of varying age (3 or 6 h) were examined in a flow system. A tissue-mimicking phantom of varying thickness (5 to 10 cm) was placed over the thrombosed vessel and the 2-D or 3-D diagnostic transducer aligned with the thrombosed vessel using a positioning system. Diluted lipid-encapsulated microbubbles were infused during ultrasound application. Percent thrombus dissolution (%TD) was calculated by comparison of clot mass before and after treatment. Both 2-D and 3-D-guided ultrasound increased %TD compared with microbubbles alone, but %TD achieved with 6-h-old thrombi was significantly less than 3-h-old thrombi. Thrombus dissolution was achieved at 10 cm tissue-mimicking depths, even without inertial cavitation. In conclusion, diagnostic 2-D or 3-D ultrasound can dissolve thrombi with intravenous nontargeted microbubbles, even at tissue attenuation distances of up to 10 cm. This treatment modality is less effective, however, for older aged thrombi.


Subject(s)
Microbubbles , Thrombosis/therapy , Ultrasonic Therapy , Animals , Humans , Microbubbles/therapeutic use , Time Factors , Treatment Outcome
8.
J Ultrasound Med ; 27(4): 611-32; quiz 633-6, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18359911

ABSTRACT

Diagnostic ultrasound contrast agents have been developed for enhancing the echogenicity of blood and for delineating other structures of the body. Approved agents are suspensions of gas bodies (stabilized microbubbles), which have been designed for persistence in the circulation and strong echo return for imaging. The interaction of ultrasound pulses with these gas bodies is a form of acoustic cavitation, and they also may act as inertial cavitation nuclei. This interaction produces mechanical perturbation and a potential for bioeffects on nearby cells or tissues. In vitro, sonoporation and cell death occur at mechanical index (MI) values less than the inertial cavitation threshold. In vivo, bioeffects reported for MI values greater than 0.4 include microvascular leakage, petechiae, cardiomyocyte death, inflammatory cell infiltration, and premature ventricular contractions and are accompanied by gas body destruction within the capillary bed. Bioeffects for MIs of 1.9 or less have been reported in skeletal muscle, fat, myocardium, kidney, liver, and intestine. Therapeutic applications that rely on these bioeffects include targeted drug delivery to the interstitium and DNA transfer into cells for gene therapy. Bioeffects of contrast-aided diagnostic ultrasound happen on a microscopic scale, and their importance in the clinical setting remains uncertain.


Subject(s)
Contrast Media/adverse effects , Ultrasonography , Animals , Body Temperature , Echocardiography , Gases/metabolism , Humans , Safety
9.
Learn Mem ; 10(5): 394-400, 2003.
Article in English | MEDLINE | ID: mdl-14557612

ABSTRACT

The effect of blockade of 5-HT1A receptors was investigated on (1). retention in a mildly aversive passive-avoidance task, and (2). spontaneous single-unit activity of central nucleus of the amygdala (CeA) neurons, a brain site implicated in modulation of retention. Systemic administration of the selective 5-HT1A antagonist NAN-190 immediately after training markedly-and dose-dependently-facilitated retention in the passive-avoidance task; enhanced retention was time-dependent and was not attributable to variations in wattages of shock received by animals. Systemic administration of NAN-190 had mixed effects on spontaneous single-unit activity of CeA neurons recorded extracellularly in vivo; microiontophoretic application of 5-HT, in contrast, consistently and potently suppressed CeA activity. The present findings-that 5-HT1A receptor blockade by NAN-190 (1). enhances retention in the passive-avoidance task, and (2). does not consistently increase spontaneous neuronal activity of the CeA-provide evidence that a serotonergic system tonically inhibits modulation of retention in the passive-avoidance task through activation of the 5-HT1A receptor subtype at brain sites located outside the CeA.


Subject(s)
Amygdala/drug effects , Avoidance Learning/drug effects , Piperazines/pharmacology , Receptor, Serotonin, 5-HT1A/physiology , Retention, Psychology/drug effects , Retention, Psychology/physiology , Serotonin Antagonists/pharmacology , Action Potentials , Amygdala/physiology , Animals , Avoidance Learning/physiology , Dose-Response Relationship, Drug , Electrophysiology , Male , Random Allocation , Rats , Rats, Long-Evans , Serotonin 5-HT1 Receptor Antagonists
10.
Ultrasound Med Biol ; 29(1): 93-102, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12604120

ABSTRACT

The data collected in this project supported the a priori hypothesis that the concentration of dissolved oxygen in whole human blood in vitro affected the extent of ultrasound (US)-induced hemolysis under conditions conducive to the occurrence of inertial cavitation. Aliquots of whole human blood in vitro with a relatively high O(2) level had statistically significantly more 1-MHz US-induced hemolysis than aliquots with a relatively low O(2) level in the presence of controlled gas nucleation (Albunex or ALX, supplementation), with US-induced hemolytic yields being substantially less at 2.2- and 3.5-MHz exposures or in the absence of ALX-supplementation at otherwise comparable acoustic pressures, pulse lengths and duty factors. Passive cavitation detection (pcd) measures indicated a linear relationship for hemolysis up to about 70% and pcd values (R(2) = 0.99).


Subject(s)
Erythrocytes , Hemolysis/drug effects , Oxygen/blood , Ultrasonography , Albumins/pharmacology , Contrast Media/pharmacology , Erythrocytes/diagnostic imaging , Humans , In Vitro Techniques , Pressure , Temperature
11.
Ultrasound Med Biol ; 29(1): 77-91, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12604119

ABSTRACT

This paper reports the results of a further test of the hypothesis that the extent of ultrasound (US)-induced cell lysis in the presence of a US contrast agent to enhance cavitational effects is a function of cell size. The present data support the hypothesis. Human adult erythrocytes in vitro derived from patients with HIV (n = 15) and apparently healthy individuals (n = 15) were compared for US-induced hemolysis in vitro. The anticoagulated whole blood from patients with HIV and macrocytic erythrocytes had significantly greater (p <0.0001) mean corpuscular volume (MCV) and a significantly greater (p <0.03) extent of US-induced hemolysis in vitro relative to blood from apparently normal, healthy individuals. As a control to determine if disease state (i.e., HIV infection per se) might be a contributing factor in US-induced hemolysis in vitro, the blood from patients with HIV and apparently normal MCVs (n = 15) was also tested against an additional population of apparently normal, healthy individuals (n = 15); there were no statistically significant differences in MCVs or US-induced hemolysis between the two groups (p >> 0.05). There were also no statistically significant differences in viscosities or hematocrits of the whole blood or plasma in vitro from HIV-macrocytic or apparently healthy individuals but, for all blood types, a pooled correlation existed between hematocrit and whole blood viscosity.


Subject(s)
Erythrocytes , HIV Infections/blood , Hemolysis , Ultrasonography , Blood Viscosity , Erythrocyte Indices , Erythrocytes/diagnostic imaging , Hematocrit , Humans , In Vitro Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...