Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Int Endod J ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39388299

ABSTRACT

AIM: Fluoride is widely used in dentistry for its caries prevention. To reduce dental caries, the optimal fluoride concentration of public water supplies in the United States is 0.7 ppm. However, excessive systemic fluoride consumption can lead to dental/enamel fluorosis. Numerous studies have explored the effects of fluoride on enamel and enamel-forming cells. However, research on systemic fluoride's impact on dentine is limited, particularly the effect of fluoride on the structure of the dentine-pulp complex. Therefore, this study aimed to identify how excessive fluoride affects dentine microstructure using an experimental mouse model. METHODOLOGY: C57BL6/J male mice (6-9 weeks old) were randomized into four groups (Fluoride at 0, 50, 100, or 125 ppm in drinking water) (n = 4/group). Mice were provided water ad libitum for 6 weeks along with fluoride-free food. Thereafter, mandibular incisors were analysed. Enamel phenotypes were evaluated using light microscopy and quantitative light-induced fluorescence (QLF) to measure fluorosis levels. Dentine morphology was evaluated using micro-CT, scanning electron microscopy (SEM), SEM-EDX (energy-dispersive X-ray), microhardness test and histological imaging. Data were analysed using one-way ANOVA with Dunnett's multiple comparisons as a post hoc test and the Kruskal-Wallis test with Dunn's multiple comparisons post hoc test (p < .05). RESULTS: Mice treated with fluoride at 50-125 ppm developed enamel hypoplasia in their erupting incisors and micro-CT imaging revealed that fluoride 125 ppm caused external resorption of the growing incisor. Dentine mineral density, dentine volume decreased compared with the 0 ppm control, while pulp volume increased compared with the 0 ppm control group. SEM showed wider predentine layer and abnormalities in calcified matrix vesicles derived from odontoblasts in fluoride 100 and 125 ppm groups. Vickers microhardness of dentine significantly decreased in the high-dose group. Fluoride-induced dentine hypoplasia in a dose-dependent manner. Histological evaluation showed excessive fluoride 125 ppm induced micro abscess formation and inflammatory cell infiltration. Fluoride induced dentine dysplasia with a dentine microstructure resembling hypophosphatasia. CONCLUSIONS: High doses of systemic fluoride can cause dentine dysplasia. Both three-dimensional and microstructural analyses showed the structural, chemical and mechanical changes in the dentine and the mineralized tissue components, along with external resorption and pulp inflammation.

2.
Int J Mol Sci ; 25(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39273544

ABSTRACT

Excessive fluoride ingestion during tooth development can cause dental fluorosis. Previously, we reported that fluoride activates histone acetyltransferase (HAT) to acetylate p53, promoting fluoride toxicity in mouse ameloblast-like LS8 cells. However, the roles of HAT and histone acetylation status in fluoride-mediated gene expression remain unidentified. Here, we demonstrate that fluoride-mediated histone modification causes gene expression alterations in LS8 cells. LS8 cells were treated with or without fluoride followed by ChIP-Seq analysis of H3K27ac. Genes were identified by differential H3K27ac peaks within ±1 kb from transcription start sites. The levels of mRNA of identified genes were assessed using rea-time PCR (qPCR). Fluoride increased H3K27ac peaks associated with Bax, p21, and Mdm2 genes and upregulated their mRNA levels. Fluoride decreased H3K27ac peaks and p53, Bad, and Bcl2 had suppressed transcription. HAT inhibitors (Anacardic acid or MG149) suppressed fluoride-induced mRNA of p21 and Mdm2, while fluoride and the histone deacetylase (HDAC) inhibitor sodium butyrate increased Bad and Bcl2 expression above that of fluoride treatment alone. To our knowledge, this is the first study that demonstrates epigenetic regulation via fluoride treatment via H3 acetylation. Further investigation is required to elucidate epigenetic mechanisms of fluoride toxicity in enamel development.


Subject(s)
Ameloblasts , Fluorides , Histones , Animals , Mice , Acetylation/drug effects , Histones/metabolism , Ameloblasts/metabolism , Ameloblasts/drug effects , Fluorides/pharmacology , Fluorides/toxicity , Cell Line , Gene Expression Regulation/drug effects , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/pharmacology
3.
Ecotoxicol Environ Saf ; 260: 115089, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37271104

ABSTRACT

Perfluorooctanoic acid (PFOA) is an artificial fluorinated organic compound that has generated increased public attention due to its potential health hazards. Unsafe levels of PFOA exposure can affect reproduction, growth and development. During tooth enamel development (amelogenesis), environmental factors including fluoride can cause enamel hypoplasia. However, the effects of PFOA on ameloblasts and tooth enamel formation remain largely unknown. In the present study we demonstrate several PFOA-mediated cell death pathways (necrosis/necroptosis, and apoptosis) and assess the roles of ROS-MAPK/ERK signaling in PFOA-mediated cell death in mouse ameloblast-lineage cells (ALC). ALC cells were treated with PFOA. Cell proliferation and viability were analyzed by MTT assays and colony formation assays, respectively. PFOA suppressed cell proliferation and viability in a dose dependent manner. PFOA induced both necrosis (PI-positive cells) and apoptosis (cleaved-caspase-3, γH2AX and TUNEL-positive cells). PFOA significantly increased ROS production and up-regulated phosphor-(p)-ERK. Addition of ROS inhibitor N-acetyl cysteine (NAC) suppressed p-ERK and decreased necrosis, and increased cell viability compared to PFOA alone, whereas NAC did not change apoptosis. This suggests that PFOA-mediated necrosis was induced by ROS-MAPK/ERK signaling, but apoptosis was not associated with ROS. Addition of MAPK/ERK inhibitor PD98059 suppressed necrosis and increased cell viability compared to PFOA alone. Intriguingly, PD98059 augmented PFOA-mediated apoptosis. This suggests that p-ERK promoted necrosis but suppressed apoptosis. Addition of the necroptosis inhibitor Necrostatin-1 restored cell viability compared to PFOA alone, while pan-caspase inhibitor Z-VAD did not mitigate PFOA-mediated cell death. These results suggest that 1) PFOA-mediated cell death was mainly caused by necrosis/necroptosis by ROS-MAPK/ERK signaling rather than apoptosis, 2) MAPK/ERK signaling plays the dual roles (promoting necrosis and suppressing apoptosis) under PFOA treatment. This is the initial report to indicate that PFOA could be considered as a possible causative factor for cryptogenic enamel malformation. Further studies are required to elucidate the mechanisms of PFOA-mediated adverse effects on amelogenesis.


Subject(s)
Ameloblasts , Mice , Animals , Reactive Oxygen Species/metabolism , Ameloblasts/metabolism , Cell Death , Necrosis
5.
Int J Pharm Compd ; 24(3): 194-197, 2020.
Article in English | MEDLINE | ID: mdl-32401737

ABSTRACT

Beta blockers (timolol 0.5% ophthalmic solution) delivered topically to the eyes or sublingually have recently been reported in case series and small placebo controlled studies to be effective in some cases of acute migraine. Rapid systemic absorption to achieve therapeutic levels of beta blockers is extremely important in the treatment of acute migraine. Nasal delivered beta blockers have been shown to be absorbed as fast as intravenous administration and seem ideal for acute migraine treatment. A nasal delivered beta-blocker spray has not been available. In 2019, O'Brien Pharmacy prepared a compounded timolol nasal spray that is now available to authorized prescribers. The theoretical basis for using nasal beta blocker spray is presented and research on fast-acting beta-blocker solutions for acute migraine is reviewed.


Subject(s)
Adrenergic beta-Antagonists/therapeutic use , Migraine Disorders , Nasal Sprays , Administration, Intranasal , Double-Blind Method , Humans , Migraine Disorders/physiopathology
6.
Front Genet ; 10: 291, 2019.
Article in English | MEDLINE | ID: mdl-31001328

ABSTRACT

The interfrontal bone (IF) is a minor skeletal trait residing between the frontal bones. IF is considered a quasi-continuous trait. Genetic and environmental factors appear to play roles in its development. The mechanism(s) underlying IF bone development are poorly understood. We sought to survey inbred strains of mice for the prevalence of IF and to perform QTL mapping studies. Archived mouse skulls from a mouse phenome project (MPP) were available for this study. 27 inbred strains were investigated with 6-20 mice examined for each strain. Skulls were viewed dorsally and the IF measured using a zoom stereomicroscope equipped with a calibrated reticle. A two generation cross between C3H/HeJ and C57BL/6J mice was performed to generate a panel of 468 F2 mice. F2 mice were phenotyped for presence or absence of IF bone and among mice with the IF bone maximum widths and lengths were measured. F2 mice were genotyped for 573 SNP markers informative between the two strains and subjected to linkage map construction and interval QTL mapping. Results: Strain dependent differences in the prevalence of IF bones were observed. Overall, 77.8% or 21/27, of the inbred strains examined had IF bones. Six strains (C3H/HeJ, MOLF/EiJ, NZW/LacJ, SPRET/EiJ, SWR/J, and WSB/EiJ) lack IF bones. Among the strains with IF bones, the prevalence ranged from 100% for C57BL/6J, C57/LJ, CBA/J, and NZB/B1NJ and down to 5% for strains such as CAST/Ei. QTL mapping for IF bone length and widths identifies for each trait one strong QTL detected on chromosome 14 along with several other significant QTLs on chromosomes 3, 4, 7, and 11. Strain dependent differences in IF will facilitate investigation of genetic factors contributing to IF development. IF bone formation may be a model to understand intrasutural bone formation.

7.
Caries Res ; 52(1-2): 78-87, 2018.
Article in English | MEDLINE | ID: mdl-29248934

ABSTRACT

Enamel formation is a complex 2-step process by which proteins are secreted to form an extracellular matrix, followed by massive protein degradation and subsequent mineralization. Excessive systemic exposure to fluoride can disrupt this process and lead to a condition known as dental fluorosis. The genetic background influences the responses of mineralized tissues to fluoride, such as dental fluorosis, observed in A/J and 129P3/J mice. The aim of the present study was to map the protein profile of enamel matrix from A/J and 129P3/J strains. Enamel matrix samples were obtained from A/J and 129P3/J mice and analyzed by 2-dimensional electrophoresis and liquid chromatography coupled with mass spectrometry. A total of 120 proteins were identified, and 7 of them were classified as putative uncharacterized proteins and analyzed in silico for structural and functional characterization. An interesting finding was the possibility of the uncharacterized sequence Q8BIS2 being an enzyme involved in the degradation of matrix proteins. Thus, the results provide a comprehensive view of the structure and function for putative uncharacterized proteins found in the enamel matrix that could help to elucidate the mechanisms involved in enamel biomineralization and genetic susceptibility to dental fluorosis.


Subject(s)
Dental Enamel Proteins/isolation & purification , Animals , Chromatography, Liquid , Computer Simulation , Dental Enamel/chemistry , Dental Enamel Proteins/analysis , Dental Enamel Proteins/chemistry , Electrophoresis, Gel, Two-Dimensional , Extracellular Matrix/chemistry , Male , Mice , Mice, Inbred Strains , Proteomics
8.
Front Physiol ; 8: 302, 2017.
Article in English | MEDLINE | ID: mdl-28553235

ABSTRACT

Chronic fluoride over-exposure during pre-eruptive enamel development can cause dental fluorosis. Severe dental fluorosis is characterized by porous, soft enamel that is vulnerable to erosion and decay. The prevalence of dental fluorosis among the population in the USA, India and China is increasing. Other than avoiding excessive intake, treatments to prevent dental fluorosis remain unknown. We previously reported that high-dose fluoride induces endoplasmic reticulum (ER) stress and oxidative stress in ameloblasts. Cell stress induces gene repression, mitochondrial damage and apoptosis. An aromatic fatty acid, 4-phenylbutyrate (4PBA) is a chemical chaperone that interacts with misfolded proteins to prevent ER stress. We hypothesized that 4PBA ameliorates fluoride-induced ER stress in ameloblasts. To determine whether 4PBA protects ameloblasts from fluoride toxicity, we analyzed gene expression of Tgf-ß1, Bcl2/Bax ratio and cytochrome-c release in vitro. In vivo, we measured fluorosis levels, enamel hardness and fluoride concentration. Fluoride treated Ameloblast-lineage cells (ALC) had decreased Tgf-ß1 expression and this was reversed by 4PBA treatment. The anti-apoptotic Blc2/Bax ratio was significantly increased in ALC cells treated with fluoride/4PBA compared to fluoride treatment alone. Fluoride treatment induced cytochrome-c release from mitochondria into the cytosol and this was inhibited by 4PBA treatment. These results suggest that 4PBA mitigates fluoride-induced gene suppression, apoptosis and mitochondrial damage in vitro. In vivo, C57BL/6J mice were provided fluoridated water for six weeks with either fluoride free control-chow or 4PBA-containing chow (7 g/kg 4PBA). With few exceptions, enamel microhardness, fluorosis levels, and fluoride concentrations of bone and urine did not differ significantly between fluoride treated animals fed with control-chow or 4PBA-chow. Although 4PBA mitigated high-dose fluoride toxicity in vitro, a diet rich in 4PBA did not attenuate dental fluorosis in rodents. Perhaps, not enough intact 4PBA reaches the rodent ameloblasts necessary to reverse the effects of fluoride toxicity. Further studies will be required to optimize protocols for 4PBA administration in vivo in order to evaluate the effect of 4PBA on dental fluorosis.

9.
JAMA ; 316(9): 943-51, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27599329

ABSTRACT

IMPORTANCE: Epistaxis is a major factor negatively affecting quality of life in patients with hereditary hemorrhagic telangiectasia (HHT; also known as Osler-Weber-Rendu disease). Optimal treatment for HHT-related epistaxis is uncertain. OBJECTIVE: To determine whether topical therapy with any of 3 drugs with differing mechanisms of action is effective in reducing HHT-related epistaxis. DESIGN, SETTING, AND PARTICIPANTS: The North American Study of Epistaxis in HHT was a double-blind, placebo-controlled randomized clinical trial performed at 6 HHT centers of excellence. From August 2011 through March 2014, there were 121 adult patients who met the clinical criteria for HHT and had experienced HHT-related epistaxis with an Epistaxis Severity Score of at least 3.0. Follow-up was completed in September 2014. INTERVENTIONS: Patients received twice-daily nose sprays for 12 weeks with either bevacizumab 1% (4 mg/d), estriol 0.1% (0.4 mg/d), tranexamic acid 10% (40 mg/d), or placebo (0.9% saline). MAIN OUTCOMES AND MEASURES: The primary outcome was median weekly epistaxis frequency during weeks 5 through 12. Secondary outcomes included median duration of epistaxis during weeks 5 through 12, Epistaxis Severity Score, level of hemoglobin, level of ferritin, need for transfusion, emergency department visits, and treatment failure. RESULTS: Among the 121 patients who were randomized (mean age, 52.8 years [SD, 12.9 years]; 44% women with a median of 7.0 weekly episodes of epistaxis [interquartile range {IQR}, 3.0-14.0]), 106 patients completed the study duration for the primary outcome measure (43 were women [41%]). Drug therapy did not significantly reduce epistaxis frequency (P = .97). After 12 weeks of treatment, the median weekly number of bleeding episodes was 7.0 (IQR, 4.5-10.5) for patients in the bevacizumab group, 8.0 (IQR, 4.0-12.0) for the estriol group, 7.5 (IQR, 3.0-11.0) for the tranexamic acid group, and 8.0 (IQR, 3.0-14.0) for the placebo group. No drug treatment was significantly different from placebo for epistaxis duration. All groups had a significant improvement in Epistaxis Severity Score at weeks 12 and 24. There were no significant differences between groups for hemoglobin level, ferritin level, treatment failure, need for transfusion, or emergency department visits. CONCLUSIONS AND RELEVANCE: Among patients with HHT, there were no significant between-group differences in the use of topical intranasal treatment with bevacizumab vs estriol vs tranexamic acid vs placebo and epistaxis frequency. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01408030.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Bevacizumab/administration & dosage , Epistaxis/drug therapy , Telangiectasia, Hereditary Hemorrhagic/complications , Administration, Intranasal , Administration, Topical , Adult , Aged , Antifibrinolytic Agents/administration & dosage , Blood Transfusion , Double-Blind Method , Epistaxis/etiology , Female , Humans , Male , Middle Aged , Quality of Life , Severity of Illness Index , Tranexamic Acid/administration & dosage , Treatment Outcome
10.
Caries Res ; 50(1): 24-31, 2016.
Article in English | MEDLINE | ID: mdl-26820156

ABSTRACT

The mechanisms by which excessive ingestion of fluoride (F) during amelogenesis leads to dental fluorosis (DF) are still not precisely known. Inbred strains of mice vary in their susceptibility to develop DF, and therefore permit the investigation of underlying molecular events influencing DF severity. We employed a proteomic approach to characterize and evaluate changes in protein expression from secretory-stage and maturation-stage enamel in 2 strains of mice with different susceptibilities to DF (A/J, i.e. 'susceptible' and 129P3/J, i.e. 'resistant'). Weanling male and female susceptible and resistant mice fed a low-F diet were divided into 2 F-water treatment groups. They received water containing 0 (control) or 50 mg F/l for 6 weeks. Plasma and incisor enamel was analyzed for F content. For proteomic analysis, the enamel proteins extracted for each group were separated by 2-dimensional electrophoresis and subsequently characterized by liquid-chromatography electrospray-ionization quadrupole time-of-flight mass spectrometry. F data were analyzed by 2-way ANOVA and Bonferroni's test (p < 0.05). Resistant mice had significantly higher plasma and enamel F concentrations when compared with susceptible mice in the F-treated groups. The proteomic results for mice treated with 0 mg F/l revealed that during the secretory stage, resistant mice had a higher abundance of proteins than their susceptible counterparts, but this was reversed during the maturation stage. Treatment with F greatly increased the number of protein spots detected in both stages. Many proteins not previously described in enamel (e.g. type 1 collagen) as well as some uncharacterized proteins were identified. Our findings reveal new insights regarding amelogenesis and how genetic background and F affect this process.


Subject(s)
Dental Enamel , Amelogenesis , Animals , Female , Fluorosis, Dental , Male , Mass Spectrometry , Mice , Proteomics
11.
Dentomaxillofac Radiol ; 45(3): 20150281, 2016.
Article in English | MEDLINE | ID: mdl-26670605

ABSTRACT

OBJECTIVES: Proximal dental caries remains a prevalent disease with only modest detection rates by current diagnostic systems. Many new systems are available without controlled validation of diagnostic efficacy. The objective of this study was to evaluate the diagnostic efficacy of three potentially promising new imaging systems. METHODS: This study evaluated the caries detection efficacy of Schick 33 (Sirona Dental, Salzburg, Austria) intraoral digital detector images employing an advanced sharpening filter, Planmeca ProMax(®) (Planmeca Inc., Helsinki, Finland) extraoral "panoramic bitewing" images and Sirona Orthophos XG3D (Sirona Dental) CBCT images with advanced artefact reduction. Conventional photostimulable phosphor images served as the control modality. An ex vivo study design using extracted human teeth, ten expert observers and micro-CT ground truth was employed. RESULTS: Receiver operating characteristic analysis indicated similar diagnostic efficacy of all systems (ANOVA p > 0.05). The sensitivity of the Schick 33 images (0.48) was significantly lower than the other modalities (0.53-0.62). The specificity of the Planmeca images (0.86) was significantly lower than Schick 33 (0.96) and XG3D (0.97). The XG3D showed significantly better cavitation detection sensitivity (0.62) than the other modalities (0.48-0.57). CONCLUSIONS: The Schick 33 images demonstrated reduced caries sensitivity, whereas the Planmeca panoramic bitewing images demonstrated reduced specificity. XG3D with artefact reduction demonstrated elevated sensitivity and specificity for caries detection, improved depth accuracy and substantially improved cavitation detection. Care must be taken to recognize potential false-positive caries lesions with Planmeca panoramic bitewing images. Use of CBCT for caries detection must be carefully balanced with the presence of metal artefacts, time commitment, financial cost and radiation dose.


Subject(s)
Dental Caries/diagnostic imaging , Imaging, Three-Dimensional/statistics & numerical data , Radiography, Dental/statistics & numerical data , Artifacts , Cone-Beam Computed Tomography/statistics & numerical data , Humans , Materials Testing , ROC Curve , Radiography, Bitewing/statistics & numerical data , Radiography, Dental, Digital/statistics & numerical data , Radiography, Panoramic/statistics & numerical data , Sensitivity and Specificity , Technology, Dental/statistics & numerical data , Technology, Radiologic/statistics & numerical data , X-Ray Intensifying Screens/statistics & numerical data , X-Ray Microtomography/statistics & numerical data
12.
Cells Tissues Organs ; 200(6): 413-23, 2015.
Article in English | MEDLINE | ID: mdl-26381618

ABSTRACT

The study objective was to investigate the effects of fluoride on intact parathyroid hormone (iPTH) secretion. Thyro-parathyroid complexes (TPC) from C3H (n = 18) and B6 (n = 18) mice were cultured in Ca²âº-optimized medium. TPC were treated with 0, 250, or 500 µM NaF for 24 h and secreted iPTH assayed by ELISA. C3H (n = 78) and B6 (n = 78) mice were gavaged once with distilled or fluoride (0.001 mg [F⁻]/g of body weight) water. At serial time points (0.5-96 h) serum iPTH, fluoride, total calcium, phosphorus, and magnesium levels were determined. Expression of genes involved in mineral regulation via the bone-parathyroid-kidney (BPK) axis, such as parathyroid hormone (Pth), calcium-sensing receptor (Casr), vitamin D receptor (Vdr), parathyroid hormone-like hormone (Pthlh), fibroblast growth factor 23 (Fgf23), α-Klotho (αKlotho), fibroblast growth factor receptor 1c (Fgf1rc), tumor necrosis factor 11 (Tnfs11), parathyroid hormone receptor 1 (Pth1r), solute carrier family 34 member 1 (Slc34a1), solute carrier 9 member 3 regulator 1 (Slc9a3r1), chloride channel 5 (Clcn5), and PDZ domain-containing 1 (Pdzk1), was determined in TPC, humeri, and kidneys at 24 h. An in vitro decrease in iPTH was seen in C3H and B6 TPC at 500 µM (p < 0.001). In vivo levels of serum fluoride peaked at 0.5 h in both C3H (p = 0.002) and B6 (p = 0.01). In C3H, iPTH decreased at 24 h (p < 0.0001), returning to baseline at 48 h. In B6, iPTH increased at 12 h (p < 0.001), returning to baseline at 24 h. Serum total calcium, phosphorus, and magnesium levels did not change significantly. Pth, Casr,αKlotho,Fgf1rc,Vdr, and Pthlh were significantly upregulated in C3H TPC compared to B6. In conclusion, the effects of fluoride on TPC in vitro were equivalent between the 2 mouse strains. However, fluoride demonstrated an early strain-dependent effect on iPTH secretion in vivo. Both strains demonstrated differences in the expression of genes involved in the BPK axis, suggesting a possible role in the physiologic handling of fluoride.


Subject(s)
Parathyroid Hormone/blood , Sodium Fluoride/pharmacology , Animals , Calcium/blood , Cells, Cultured , Fibroblast Growth Factor-23 , Gene Expression Regulation/drug effects , Magnesium/blood , Male , Mice, Inbred C3H , Mice, Inbred C57BL , Parathyroid Glands/cytology , Parathyroid Glands/drug effects , Parathyroid Glands/metabolism , Parathyroid Hormone/metabolism , Phosphorus/blood , Sodium Fluoride/administration & dosage , Sodium Fluoride/blood
13.
Clin Implant Dent Relat Res ; 17(2): 384-94, 2015 Apr.
Article in English | MEDLINE | ID: mdl-23763591

ABSTRACT

PURPOSE: This pilot study evaluated the molecular, histologic, and radiographic healing of bone to instrumentation with piezoelectric or high speed rotary (R) devices over a 3-week healing period. MATERIAL AND METHODS: Fourteen Sprague-Dawley rats (Charles River Laboratories International, Inc., Wilmington, MA, USA) underwent bilateral tibial osteotomies prepared in a randomized split-leg design using Piezotome® (P1) (Satelec Acteon, Merignac, France), Piezotome 2® (P2) (Satelec Acteon), High-speed R instrumentation, or sham surgery (S). At 1 week, an osteogenesis array was used to evaluate differences in gene expression while quantitative analysis assessed percentage bone fill (PBF) and bone mineral density (BMD) in the defect, peripheral, and distant regions at 3 weeks. Qualitative histologic evaluation of healing osteotomies was also performed at 3 weeks. RESULTS: At 1 week, expression of 11 and 18 genes involved in bone healing was significantly (p < .05) lower following P1 and P2 instrumentation, respectively, relative to S whereas 16 and 4 genes were lower relative to R. No differences in PBF or BMD were detected between groups within the osteotomy defect. However, significant differences in PBF (p = .020) and BMD (p = .008) were noted along the peripheral region between P2 and R groups, being R the group with the lowest values. Histologically, smooth osteotomy margins were present following instrumentation using P1 or P2 relative to R. CONCLUSIONS: Piezoelectric instrumentation favors preservation of bone adjacent to osteotomies while variations in gene expression suggest differences in healing rates due to surgical modality. Bone instrumented by piezoelectric surgery appears less detrimental to bone healing than high-speed R device.


Subject(s)
Osteotomy/instrumentation , Piezosurgery/instrumentation , Tibia/surgery , Wound Healing/physiology , Animals , Bone Density , Gene Expression , Osteogenesis , Pilot Projects , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , X-Ray Microtomography
14.
PLoS One ; 9(12): e114343, 2014.
Article in English | MEDLINE | ID: mdl-25501567

ABSTRACT

Genetic factors influence the effects of fluoride (F) on amelogenesis and bone homeostasis but the underlying molecular mechanisms remain undefined. A label-free proteomics approach was employed to identify and evaluate changes in bone protein expression in two mouse strains having different susceptibilities to develop dental fluorosis and to alter bone quality. In vivo bone formation and histomorphometry after F intake were also evaluated and related to the proteome. Resistant 129P3/J and susceptible A/J mice were assigned to three groups given low-F food and water containing 0, 10 or 50 ppmF for 8 weeks. Plasma was evaluated for alkaline phosphatase activity. Femurs, tibiae and lumbar vertebrae were evaluated using micro-CT analysis and mineral apposition rate (MAR) was measured in cortical bone. For quantitative proteomic analysis, bone proteins were extracted and analyzed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS), followed by label-free semi-quantitative differential expression analysis. Alterations in several bone proteins were found among the F treatment groups within each mouse strain and between the strains for each F treatment group (ratio ≥1.5 or ≤0.5; p<0.05). Although F treatment had no significant effects on BMD or bone histomorphometry in either strain, MAR was higher in the 50 ppmF 129P3/J mice than in the 50 ppmF A/J mice treated with 50 ppmF showing that F increased bone formation in a strain-specific manner. Also, F exposure was associated with dose-specific and strain-specific alterations in expression of proteins involved in osteogenesis and osteoclastogenesis. In conclusion, our findings confirm a genetic influence in bone response to F exposure and point to several proteins that may act as targets for the differential F responses in this tissue.


Subject(s)
Amelogenesis/drug effects , Amelogenesis/genetics , Bone and Bones/drug effects , Bone and Bones/physiology , Fluorides/pharmacology , Homeostasis/drug effects , Homeostasis/genetics , Alkaline Phosphatase/blood , Animals , Bone and Bones/metabolism , Collagen Type I/metabolism , Fluorosis, Dental/prevention & control , Gene Expression Regulation/drug effects , Mice , Osteogenesis/drug effects , Phenotype , Proteomics , Species Specificity
15.
Connect Tissue Res ; 55 Suppl 1: 25-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25158175

ABSTRACT

Dental fluorosis is characterized by subsurface hypomineralization and retention of enamel matrix proteins. Fluoride (F(-)) exposure generates reactive oxygen species (ROS) that can cause endoplasmic reticulum (ER)-stress. We therefore screened oxidative stress arrays to identify genes regulated by F(-) exposure. Vitamin E is an antioxidant so we asked if a diet high in vitamin E would attenuate dental fluorosis. Maturation stage incisor enamel organs (EO) were harvested from F(-)-treated rats and mice were assessed to determine if vitamin E ameliorates dental fluorosis. Uncoupling protein-2 (Ucp2) was significantly up-regulated by F(-) (∼1.5 & 2.0 fold for the 50 or 100 ppm F(-) treatment groups, respectively). Immunohistochemical results on maturation stage rat incisors demonstrated that UCP2 protein levels increased with F(-) treatment. UCP2 down-regulates mitochondrial production of ROS, which decreases ATP production. Thus, in addition to reduced protein translation caused by ER-stress, a reduction in ATP production by UCP2 may contribute to the inability of ameloblasts to remove protein from the hardening enamel. Fluoride-treated mouse enamel had significantly higher quantitative fluorescence (QF) than the untreated controls. No significant QF difference was observed between control and vitamin E-enriched diets within a given F(-) treatment group. Therefore, a diet rich in vitamin E did not attenuate dental fluorosis. We have identified a novel oxidative stress response gene that is up-regulated in vivo by F(-) and activation of this gene may adversely affect ameloblast function.


Subject(s)
Enamel Organ/drug effects , Fluorides/pharmacology , Fluorosis, Dental/metabolism , Ion Channels/metabolism , Mitochondrial Proteins/metabolism , Phosphates/pharmacology , Animals , Dental Enamel Proteins/metabolism , Mice, Inbred C57BL , Rats, Sprague-Dawley , Transcriptional Activation , Uncoupling Protein 2 , Up-Regulation
16.
Eur J Oral Sci ; 121(4): 293-302, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23841780

ABSTRACT

RhoA plays a fundamental role in regulation of the actin cytoskeleton, intercellular attachment, and cell proliferation. During amelogenesis, ameloblasts (which produce the enamel proteins) undergo dramatic cytoskeletal changes and the RhoA protein level is up-regulated. Transgenic mice were generated that express a dominant-negative RhoA transgene in ameloblasts using amelogenin gene-regulatory sequences. Transgenic and wild-type (WT) molar tooth germs were incubated with sodium fluoride (NaF) or sodium chloride (NaCl) in organ culture. Filamentous actin (F-actin) stained with phalloidin was elevated significantly in WT ameloblasts treated with NaF compared with WT ameloblasts treated with NaCl or with transgenic ameloblasts treated with NaF, thereby confirming a block in the RhoA/Rho-associated protein kinase (ROCK) pathway in the transgenic mice. Little difference in quantitative fluorescence (an estimation of fluorosis) was observed between WT and transgenic incisors from mice provided with drinking water containing NaF. We subsequently found reduced transgene expression in incisors compared with molars. Transgenic molar teeth had reduced amelogenin, E-cadherin, and Ki67 compared with WT molar teeth. Hypoplastic enamel in transgenic mice correlates with reduced expression of the enamel protein, amelogenin, and E-cadherin and cell proliferation are regulated by RhoA in other tissues. Together these findings reveal deficits in molar ameloblast function when RhoA activity is inhibited.


Subject(s)
Ameloblasts/metabolism , Amelogenesis/drug effects , Dental Enamel/drug effects , Sodium Fluoride/pharmacology , Tooth Germ/growth & development , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Ameloblasts/drug effects , Amelogenin/metabolism , Animals , Dental Enamel/abnormalities , Dental Enamel Hypoplasia/metabolism , Fluorosis, Dental/metabolism , Gene Expression , Incisor/pathology , Mice , Mice, Transgenic , Microscopy, Fluorescence , Molar/pathology
17.
PLoS One ; 8(1): e53261, 2013.
Article in English | MEDLINE | ID: mdl-23308176

ABSTRACT

A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis due to their genetic backgrounds. They also differ with respect to several features of fluoride (F) metabolism and metabolic handling of water. This study was done to determine whether differences in F metabolism could be explained by diversities in the profile of protein expression in kidneys. Weanling, male A/J mice (susceptible to dental fluorosis, n = 18) and 129P3/J mice (resistant, n = 18) were housed in pairs and assigned to three groups given low-F food and drinking water containing 0, 10 or 50 ppm [F] for 7 weeks. Renal proteome profiles were examined using 2D-PAGE and LC-MS/MS. Quantitative intensity analysis detected between A/J and 129P3/J strains 122, 126 and 134 spots differentially expressed in the groups receiving 0, 10 and 50 ppmF, respectively. From these, 25, 30 and 32, respectively, were successfully identified. Most of the proteins were related to metabolic and cellular processes, followed by response to stimuli, development and regulation of cellular processes. In F-treated groups, PDZK-1, a protein involved in the regulation of renal tubular reabsorption capacity was down-modulated in the kidney of 129P3/J mice. A/J and 129P3/J mice exhibited 11 and 3 exclusive proteins, respectively, regardless of F exposure. In conclusion, proteomic analysis was able to identify proteins potentially involved in metabolic handling of F and water that are differentially expressed or even not expressed in the strains evaluated. This can contribute to understanding the molecular mechanisms underlying genetic susceptibility to dental fluorosis, by indicating key-proteins that should be better addressed in future studies.


Subject(s)
Fluorides/metabolism , Fluorosis, Dental/metabolism , Kidney/metabolism , Proteome/metabolism , Animals , Fluorosis, Dental/genetics , Gene Expression Regulation , Male , Mice , Proteome/genetics , Tandem Mass Spectrometry
18.
Int J Dent ; 2012: 894815, 2012.
Article in English | MEDLINE | ID: mdl-22754572

ABSTRACT

Objective. This preclinical pilot study evaluated the systemic, radiographic, and histological responses to bone putty containing lidocaine in a canine tooth extraction model. Methods. In five beagle dogs the right mandibular premolars were extracted and sockets grafted with (1) xenograft particulate bone and a collagen sponge plug (control), (2) bone putty alone, (3) bone putty mixed with xenograft (3 : 1), or (4) xenograft sandwiched between bone putty. At 6 weeks post-op, the systemic and local responses were evaluated using a blood chemistry panel, micro-CT, and histological analyses. Results. No significant differences in blood chemistries were noted at 6 weeks postgrafting compared to baseline. Sockets grafted with either bone putty formulation demonstrated comparable radiographic and histologic evidence of bone healing compared to control sockets. Conclusions. Our preclinical results indicate that this bone putty appears to be a safe biocompatible device that may be useful in the postoperative management of tooth extractions.

19.
Vet Surg ; 41(2): 278-85, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22091789

ABSTRACT

OBJECTIVE: To compare in vitro biomechanical properties of a novel suture pattern to a current standard for primary repair of equine superficial digital flexor tendon (SDFT) laceration. STUDY DESIGN: In vitro randomized, paired design. ANIMALS: Cadaveric equine forelimb SDFT (n = 24). METHODS: The 3-loop pulley (3LP) and 6-strand Savage (SSS) suture patterns were applied to transected equine SDFT. Ultimate failure load, stiffness, mode of failure, and load required to form a 3-mm gap were obtained using a materials testing system and synchronized high-speed video analysis. Statistical comparisons were made using Student's t-test, with significance set at P < .05. RESULTS: The SSS repair failed at a higher ultimate load (421.1 N ± 47.6) than the 3LP repair (193.7 N ± 43.0; P < .001). There was no significant difference in stiffness (P = .99). Failure mode was suture breakage for all SSS repair and suture pull through for all 3LP repair. The maximum load to create a 3-mm gap in the SSS repair (102.0 N ± 22.4) was not significantly different from the 3LP repair (109.9 N ± 16.0; P = .27). CONCLUSIONS: SSS tenorrhaphy has improved strength and resistance to pull through compared with 3LP for equine SDFT in a single load-to-failure test. Load required to form a 3-mm gap was not significantly different between SSS and 3LP.


Subject(s)
Horses/injuries , Lacerations/veterinary , Suture Techniques , Tendon Injuries/therapy , Animals , Biomechanical Phenomena , Cadaver , Female , Forelimb , Lacerations/therapy , Male
20.
Hum Antibodies ; 20(3-4): 95-101, 2011.
Article in English | MEDLINE | ID: mdl-22129679

ABSTRACT

BACKGROUND: Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplasia and severe, recurrent epistaxis is a common clinical phenotype associated with HHT. An intranasal treatment regime of diluted Avastin™ (Bevacizumab; recombinant humanized anti-vascular epithelial growth factor immunoglobin G1) using apulsatile nasal irrigator has proven efficacious in clinical practice. However, concerns regarding the stability of Avastin™ following dilution and prolonged storage in standard containers used for drug delivery, such as polyethylene bottles, have so far prevented a more widespread clinical use. Compatibility with the preservative benzalkonium chloride was also unknown. OBJECTIVE: This study aimed at determining, whether dilution, prolonged refrigerated storage and the presence of the preservative benzalkonium chloride - as required for novel Avastin™ formulations - affected the biochemical and electrochemical properties of the drug. METHODS: We performed a detailed biochemical and electrochemical analysis of Avastin™, including native and sodium dodecyl sulfate polyacrylamide gel electrophoresis, enzyme-linked immunosorbent assay and isoelectric focusing. RESULTS: We did not detect any evidence of degeneration or aggregation following dilution and prolonged, refrigerated storage or from the presence of benzalkonium chloride. All biochemical and electrochemical properties of Avastin™ after dilution and prolonged, refrigerated storage were undistinguishable from control. CONCLUSIONS: Our data provide important insight into the stability of Avastin™ and allow the consideration of novel Avastin™ formulations, including its use in a metered-dose nasal spray for the treatment of HHT and other applications.


Subject(s)
Activin Receptors, Type II/immunology , Angiogenesis Inhibitors/immunology , Antibodies, Monoclonal, Humanized/immunology , Benzalkonium Compounds/chemistry , Epistaxis/drug therapy , Telangiectasia, Hereditary Hemorrhagic/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Activin Receptors, Type II/genetics , Administration, Intranasal , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Bevacizumab , Drug Stability , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Epistaxis/complications , Epistaxis/immunology , Epistaxis/metabolism , Humans , Isoelectric Focusing , Nasal Sprays , Polyethylene/chemistry , Preservatives, Pharmaceutical/chemistry , Telangiectasia, Hereditary Hemorrhagic/complications , Telangiectasia, Hereditary Hemorrhagic/immunology , Telangiectasia, Hereditary Hemorrhagic/metabolism , Vascular Endothelial Growth Factor A/immunology
SELECTION OF CITATIONS
SEARCH DETAIL