Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 12: 898796, 2022.
Article in English | MEDLINE | ID: mdl-35909964

ABSTRACT

Calprotectin is a transition metal chelating protein of the innate immune response known to exert nutritional immunity upon microbial infection. It is abundantly released during inflammation and is therefore found at sites occupied by pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. The metal limitation induced by this protein has previously been shown to mediate P. aeruginosa and S. aureus co-culture. In addition to the transition metal sequestration role of calprotectin, it has also been shown to have metal-independent antimicrobial activity via direct cell contact. Therefore, we sought to assess the impact of this protein on the biofilm architecture of P. aeruginosa and S. aureus in monomicrobial and polymicrobial culture. The experiments described in this report reveal novel aspects of calprotectin's interaction with biofilm communities of P. aeruginosa and S. aureus discovered using scanning electron microscopy and confocal laser scanning microscopy. Our results indicate that calprotectin can interact with microbial cells by stimulating encapsulation in mesh-like structures. This physical interaction leads to compositional changes in the biofilm extracellular polymeric substance (EPS) in both P. aeruginosa and S. aureus.


Subject(s)
Biofilms , Immunity, Innate , Leukocyte L1 Antigen Complex , Pseudomonas aeruginosa , Staphylococcus aureus , Anti-Bacterial Agents/immunology , Anti-Bacterial Agents/pharmacology , Extracellular Polymeric Substance Matrix/genetics , Extracellular Polymeric Substance Matrix/immunology , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Leukocyte L1 Antigen Complex/genetics , Leukocyte L1 Antigen Complex/immunology , Phagocytosis , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/immunology , Staphylococcus aureus/genetics , Staphylococcus aureus/immunology
2.
PLoS One ; 14(8): e0221565, 2019.
Article in English | MEDLINE | ID: mdl-31442275

ABSTRACT

Chronic wound infections are increasingly recognized to be dynamic and polymicrobial in nature, necessitating the development of wound models which reflect the complexities of infection in a non-healing wound. Wound slough isolated from human chronic wounds and transferred to mice was recently shown to create polymicrobial infection in mice, and there is potential this tool may be improved by cryogenic preservation. The purpose of this study was to investigate the application of cryogenic preservation to transferring polymicrobial communities, specifically by quantifying the effects of cryopreservation and wound microbiome transplantation. Slough from an established murine polymicrobial surgical excision model and five patients were subjected to three preservation strategies: refrigeration until infection, freezing in liquid nitrogen, or freezing in liquid nitrogen with glycerol solution prior to infection in individual mice. Four days following inoculation onto mice, wound microbiota were quantified using either culture isolation or by 16s rRNA gene community profiling and quantitative PCR. Cryogenic preservation did not significantly reduce bacterial viability. Reestablished microbial communities were significantly associated with patient of origin as well as host context (i.e., originally preserved from a patient versus mouse infection). Whereas preservation treatment did not significantly shape community composition, the transfers of microbiomes from human to mouse were characterized by reduced diversity and compositional changes. These findings indicated that changes should be expected to occur to community structure after colonization, and that compositional change is likely due to the rapid change in infection context as opposed to preservation strategy. Furthermore, species that were present in higher relative abundance in wound inoculate were more likely to colonize subsequent wounds, and wound inoculate with higher bacterial load established wound communities that were more compositionally similar. Results inform expectations for the complementation of chronic wound in vivo modeling with cryogenic preservation archives.


Subject(s)
Cryopreservation , Microbiota , Wounds and Injuries/microbiology , Animals , Bacterial Load , Cell Survival , Chronic Disease , Disease Models, Animal , Female , Freezing , Humans , Mice
3.
Anal Biochem ; 539: 144-148, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29107579

ABSTRACT

Monitoring patients with burn wounds for infection is standard practice because failure to rapidly and specifically identify a pathogen can result in poor clinical outcomes, including death. Therefore, a method that facilitates detection and identification of pathogens in situ within minutes of biopsy would be a significant benefit to clinicians. Mass spectrometry is rapidly becoming a standard tool in clinical settings, capable of identifying specific pathogens from complex samples. Imaging mass spectrometry (IMS) expands the information content by enabling spatial resolution of biomarkers in tissue samples as in histology, without the need for specific stains/antibodies. Herein, a murine model of thermal injury was used to study infection of burn tissue by Pseudomonas aeruginosa. This is the first use of IMS to detect P. aeruginosa infection in situ from thermally injured tissue. Multiple molecular features could be spatially resolved to infected or uninfected tissue. This demonstrates the potential use of IMS in a clinical setting to aid doctors in identifying both presence and species of pathogens in tissue.


Subject(s)
Biomarkers/analysis , Burns/microbiology , Pseudomonas aeruginosa/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Burns/complications , Burns/pathology , Carboxymethylcellulose Sodium/chemistry , Disease Models, Animal , Gelatin/chemistry , Mice , Optical Imaging , Pseudomonas Infections/complications , Pseudomonas Infections/microbiology
4.
Infect Immun ; 82(1): 92-100, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24126517

ABSTRACT

Diabetes affects 25.8 million people in the United States, or 8.3% of the population, and these numbers are even higher in developing countries. Diabetic patients are more susceptible to the development of chronic wounds with debilitating bacterial infections than nondiabetics. Previously, we compared the ability of the opportunistic pathogen Pseudomonas aeruginosa to cause biofilm-associated infections in chronic wounds of diabetic and nondiabetic mice (C. Watters, K. DeLeon, U. Trivedi, J. A. Griswold, M. Lyte, K. J. Hampel, M. J. Wargo, and K. P. Rumbaugh, Med. Microbiol. Immunol. 202:131-141, 2013). Unexpectedly, we observed that insulin-treated diabetic mice had significantly more biofilm in their wounds, which correlated with higher antibiotic tolerance. Here, we investigated whether insulin treatment modulates the diabetic immune system to favor P. aeruginosa biofilm formation. Utilizing a murine chronic wound model, we found that DNA protected P. aeruginosa in the wounds of insulin-treated diabetic mice from antibiotic treatment. We also observed increased numbers of neutrophils, reduced numbers of macrophages, and increased cell death in the wounds of diabetic mice on insulin therapy. Taken together, these data suggest that high levels of lysed neutrophils in the wounds of diabetic mice on insulin, combined with fewer macrophages to remove the cellular debris, contribute to increased DNA levels, which enhance P. aeruginosa biofilms.


Subject(s)
Biofilms/growth & development , Diabetes Mellitus, Experimental/immunology , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Wound Infection/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Apoptosis/physiology , Cell Death/immunology , Chronic Disease , DNA, Bacterial/analysis , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Drug Resistance, Bacterial/immunology , Female , Macrophages/cytology , Mice , Microbial Sensitivity Tests , Neutrophils/cytology , Pseudomonas Infections/complications , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/physiology , Wound Healing/physiology , Wound Infection/complications , Wound Infection/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...