Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 26(10): 12424-12431, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29801280

ABSTRACT

A number of techniques exist to use an ensemble of atoms as a quantum memory for light. Many of these propose to use backward retrieval as a way to improve the storage and recall efficiency. We report on a demonstration of an off-resonant Raman memory that uses backward retrieval to achieve an efficiency of 65 ± 6% at a storage time of one pulse duration. The memory has a characteristic decay time of 60 µs, corresponding to a delay-bandwidth product of 160.

2.
Sci Rep ; 5: 17633, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26655839

ABSTRACT

Optical resonance is central to a wide range of optical devices and techniques. In an optical cavity, the round-trip length and mirror reflectivity can be chosen to optimize the circulating optical power, linewidth, and free-spectral range (FSR) for a given application. In this paper we show how an atomic spinwave system, with no physical mirrors, can behave in a manner that is analogous to an optical cavity. We demonstrate this similarity by characterising the build-up and decay of the resonance in the time domain, and measuring the effective optical linewidth and FSR in the frequency domain. Our spinwave is generated in a 20 cm long Rb gas cell, yet it facilitates an effective FSR of 83 kHz, which would require a round-trip path of 3.6 km in a free-space optical cavity. Furthermore, the spinwave coupling is controllable enabling dynamic tuning of the effective cavity parameters.

3.
J Vis Exp ; (81): e50552, 2013 Nov 11.
Article in English | MEDLINE | ID: mdl-24300586

ABSTRACT

Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain.


Subject(s)
Computer Storage Devices , Optics and Photonics/methods , Quantum Theory , Rubidium/chemistry , Gases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...