Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 8(21): e2102318, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34494394

ABSTRACT

Fast charging (<15 min) of lithium-ion batteries (LIBs) for electrical vehicles (EVs) is widely seen as the key factor that will greatly stimulate the EV markets, and its realization is mainly hindered by the sluggish diffusion of Li+ . To have a mechanistic understanding of Li+ diffusion within LIBs, in this study, structural evolutions of electrodes for a Ni-rich LiNi0.6 Mn0.2 Co0.2 O2 (NMC622) || graphite cylindrical cell with high areal loading (2.78 mAh cm-2 ) are developed for operando neutron powder diffraction study at different charging rates. Via sequential Rietveld refinements, changes in structures of NMC622 and Lix C6 are obtained during moderate and fast charging (from 0.27 C to 4.4 C). NMC622 exhibits the same structural evolution regardless of C-rates. For phase transitions of Lix C6 , the stage I (LiC6 ) phase emerges earlier during the stepwise intercalation at a lower state of charge when charging rate is increased. It is also found that the stage II (LiC12 ) → stage I (LiC6 ) transition is the rate-limiting step during fast charging. The LiC12 → LiC6 transition mechanism is further analyzed using the Johnson-Mehl-Avrami-Kolmogorov model. It is concluded as a diffusion-controlled, 1D phase transition with decreasing nucleation kinetics under increasing chargingrates.

2.
Commun Chem ; 4(1): 6, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-36697523

ABSTRACT

A vast source of methane is found in gas hydrate deposits, which form naturally dispersed throughout ocean sediments and arctic permafrost. Methane may be obtained from hydrates by exchange with hydrocarbon byproduct carbon dioxide. It is imperative for the development of safe methane extraction and carbon dioxide sequestration to understand how methane and carbon dioxide co-occupy the same hydrate structure. Pair distribution functions (PDFs) provide atomic-scale structural insight into intermolecular interactions in methane and carbon dioxide hydrates. We present experimental neutron PDFs of methane, carbon dioxide and mixed methane-carbon dioxide hydrates at 10 K analyzed with complementing classical molecular dynamics simulations and Reverse Monte Carlo fitting. Mixed hydrate, which forms during the exchange process, is more locally disordered than methane or carbon dioxide hydrates. The behavior of mixed gas species cannot be interpolated from properties of pure compounds, and PDF measurements provide important understanding of how the guest composition impacts overall order in the hydrate structure.

3.
Sci Rep ; 10(1): 16311, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33004913

ABSTRACT

Ca12Ga14O33 was successfully synthesized using a wet chemistry technique to promote the homogenous mixing of the Ca and Ga cations. Rietveld refinements on X-ray and neutron powder diffraction data confirm that the compound is isostructural to Ca12Al14O33, however, with a significantly larger lattice parameter allowing for the cages that result from the framework arrangement to expand. In naturally occurring Ca12Al14O33, the mineral mayenite, these cages are occupied by O2- anions, however, experimental studies exchanging the O2- anions with other anions has led to a host of applications, depending on the caged anion. The functional nature of the structure, where framework distortions coupled with cage occupants, are correlated to electronic band structure and modifications to the framework could lead to interesting physical properties. The phase evolution was tracked using thermogravimetric analysis and high temperature X-ray diffraction and showed a lower formation temperature for the Ca12Ga14O33 analogue compared to Ca12Al14O33 synthesized using the same wet chemistry technique. Analyzing both X-ray and neutron powder diffraction using the Rietveld method with two different starting models results in one structural model, with one Ca position and the caged O on a 24d special position, being preferred.

4.
Rev Sci Instrum ; 89(9): 092906, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30278690

ABSTRACT

We present the design and capabilities of a high temperature gas flow environment for neutron diffraction and pair distribution function studies available at the Nanoscale Ordered Materials Diffractometer instrument at the Spallation Neutron Source. Design considerations for successful total scattering studies are discussed, and guidance for planning experiments, preparing samples, and correcting and reducing data is defined. The new capabilities are demonstrated with an in situ decomposition study of a battery electrode material under inert gas flow and an in operando carbonation/decarbonation experiment under reactive gas flow. This capability will aid in identifying and quantifying the atomistic configurations of chemically reactive species and their influence on underlying crystal structures. Furthermore, studies of reaction kinetics and growth pathways in a wide variety of functional materials can be performed across a range of length scales spanning the atomic to the nanoscale.

5.
Rev Sci Instrum ; 89(9): 092903, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30278755

ABSTRACT

For in situ neutron scattering experiments on cementitious materials, it is of great interest to have access to a robust device which can induce uniaxial load on a given solid sample. Challenges involve selection of materials making up the apparatus that are both weak neutron scatterers and yet adequately strong to induce loads of up to a few kilonewtons on the sample. Here, the design and experimental commissioning of a novel load frame is provided with the intended use as a neutron scattering sample environment enabling time-dependent stress-induced changes to be probed in an engineering material under compression. The frame is a scaled down version of a creep apparatus, which is typically used in the laboratory to measure deformation due to creep in concrete. Components were optimized to enable 22 MPa of compressive stress to be exerted on a 1 cm diameter cement cylinder. To minimize secondary scattering signals from the load frame, careful selection of the metal components was needed. Furthermore, due to the need to maximize the wide angular detector coverage and signal to noise for neutron total scattering measurements, the frame was designed specifically to minimize the size and required number of support posts while matching sample dimensions to the available neutron beam size.

6.
J Phys Chem A ; 117(17): 3593-8, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23557375

ABSTRACT

Gas hydrate is known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Based on results from the decomposition of three nominally similar methane hydrate samples, the kinetics of two regions, 180-200 and 230-260 K, within the overall decomposition range 140-260 K, were studied by in situ low temperature X-ray powder diffraction. The kinetic rate constants, k(a), and the reaction mechanisms, n, for ice formation from methane hydrate were determined by the Avrami model within each region, and activation energies, E(a), were determined by the Arrhenius plot. E(a) determined from the data for 180-200 K was 42 kJ/mol and for 230-260 K was 22 kJ/mol. The higher E(a) in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.


Subject(s)
Methane/chemistry , Temperature , Kinetics , Powder Diffraction , Water/chemistry
7.
J Ind Microbiol Biotechnol ; 37(10): 1023-31, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20544257

ABSTRACT

Production of both nano-sized particles of crystalline pure phase magnetite and magnetite substituted with Co, Ni, Cr, Mn, Zn or the rare earths for some of the Fe has been demonstrated using microbial processes. This microbial production of magnetic nanoparticles can be achieved in large quantities and at low cost. In these experiments, over 1 kg (wet weight) of Zn-substituted magnetite (nominal composition of Zn(0.6)Fe(2.4)O4) was recovered from 30 l fermentations. Transmission electron microscopy (TEM) was used to confirm that the extracellular magnetites exhibited good mono-dispersity. TEM results also showed a highly reproducible particle size and corroborated average crystallite size (ACS) of 13.1 ± 0.8 nm determined through X-ray diffraction (N = 7) at a 99% confidence level. Based on scale-up experiments performed using a 35-l reactor, the increase in ACS reproducibility may be attributed to a combination of factors including an increase of electron donor input, availability of divalent substitution metal ions and fewer ferrous ions in the case of substituted magnetite, and increased reactor volume overcoming differences in each batch. Commercial nanometer sized magnetite (25-50 nm) may cost $500/kg. However, microbial processes are potentially capable of producing 5-90 nm pure or substituted magnetites at a fraction of the cost of traditional chemical synthesis. While there are numerous approaches for the synthesis of nanoparticles, bacterial fermentation of magnetite or metal-substituted magnetite may represent an advantageous manufacturing technology with respect to yield, reproducibility and scalable synthesis with low costs at low energy input.


Subject(s)
Bacteria/metabolism , Biotechnology/methods , Magnetite Nanoparticles/chemistry , Zinc/metabolism , Bioreactors , Crystallography, X-Ray , Fermentation , Magnetite Nanoparticles/ultrastructure , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...