Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lang Speech ; : 238309231222207, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38282517

ABSTRACT

This study investigates whether a presumed difference in the perceptibility of cues to lexical stress in spectro-temporally degraded simulated cochlear implant (CI) speech affects how listeners weight these cues during a lexical stress identification task, specifically in their non-native language. Previous research suggests that in English, listeners predominantly rely on a reduction in vowel quality as a cue to lexical stress. In Dutch, changes in the fundamental frequency (F0) contour seem to have a greater functional weight than the vowel quality contrast. Generally, non-native listeners use the cue-weighting strategies from their native language in the non-native language. Moreover, few studies have suggested that these cues to lexical stress are differently perceptible in spectro-temporally degraded electric hearing, as CI users appear to make more effective use of changes in vowel quality than of changes in the F0 contour as cues to linguistic phenomena. In this study, native Dutch learners of English identified stressed syllables in CI-simulated and non-CI-simulated Dutch and English words that contained changes in the F0 contour and vowel quality as cues to lexical stress. The results indicate that neither the cue-weighting strategies in the native language nor in the non-native language are influenced by the perceptibility of cues in the spectro-temporally degraded speech signal. These results are in contrast to our expectations based on previous research and support the idea that cue weighting is a flexible and transferable process.

2.
Ear Hear ; 45(1): 174-185, 2024.
Article in English | MEDLINE | ID: mdl-37747307

ABSTRACT

OBJECTIVES: This study explores to what degree adolescent cochlear implant (CI) users can learn a foreign language in a school setting similar to their normal-hearing (NH) peers despite the degraded auditory input. DESIGN: A group of native Dutch adolescent CI users (age range 13 to 17 years) learning English as a foreign language at secondary school and a group of NH controls (age range 12 to 15 years) were assessed on their Dutch and English language skills using various language tasks that either relied on the processing of auditory information (i.e., listening task) or on the processing of orthographic information (i.e., reading and/or gap-fill task). The test battery also included various auditory and cognitive tasks to assess whether the auditory and cognitive functioning of the learners could explain the potential variation in language skills. RESULTS: Results showed that adolescent CI users can learn English as a foreign language, as the English language skills of the CI users and their NH peers were comparable when assessed with reading or gap-fill tasks. However, the performance of the adolescent CI users was lower for English listening tasks. This discrepancy between task performance was not observed in their native language Dutch. The auditory tasks confirmed that the adolescent CI users had coarser temporal and spectral resolution than their NH peers, supporting the notion that the difference in foreign language listening skills may be due to a difference in auditory functioning. No differences in the cognitive functioning of the CI users and their NH peers were found that could explain the variation in the foreign language listening tasks. CONCLUSIONS: In short, acquiring a foreign language with degraded auditory input appears to affect foreign language listening skills, yet does not appear to impact foreign language skills when assessed with tasks that rely on the processing of orthographic information. CI users could take advantage of orthographic information to facilitate foreign language acquisition and potentially support the development of listening-based foreign language skills.


Subject(s)
Cochlear Implantation , Cochlear Implants , Deafness , Speech Perception , Humans , Adolescent , Deafness/rehabilitation , Learning , Language Development
3.
J Speech Lang Hear Res ; 66(9): 3649-3664, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37616276

ABSTRACT

PURPOSE: This study assesses how spectrotemporal degradations that can occur in the sound transmission of a cochlear implant (CI) may influence the ability of non-native listeners to recognize the intended meaning of utterances based on the position of the prosodically focused word. Previous research suggests that perceptual accuracy and listening effort are negatively affected by CI processing (or CI simulations) or when the speech is presented in a non-native language, in a number of tasks and circumstances. How these two factors interact to affect prosodic focus interpretation, however, remains unclear. METHOD: In an online experiment, normal-hearing (NH) adolescent and adult native Dutch learners of English and a small control group of NH native English adolescents listened to CI-simulated (eight-channel noise-band vocoded) and non-CI-simulated English sentences differing in prosodically marked focus. For assessing perceptual accuracy, listeners had to indicate which of four possible context questions the speaker answered. For assessing listening effort, a dual-task paradigm was used with a secondary free recall task. RESULTS: The results indicated that prosodic focus interpretation was significantly less accurate in the CI-simulated condition compared with the non-CI-simulated condition but that listening effort was not increased. Moreover, there was no interaction between the influence of the degraded CI-simulated speech signal and listening groups in either their perceptual accuracy or listening effort. CONCLUSION: Non-native listeners are not more strongly affected by spectrotemporal degradations than native listeners, and less proficient non-native listeners are not more strongly affected by these degradations than more proficient non-native listeners.


Subject(s)
Cochlear Implantation , Cochlear Implants , Adolescent , Adult , Humans , Speech , Ethnicity , Language
4.
Ear Hear ; 41(5): 1092-1102, 2020.
Article in English | MEDLINE | ID: mdl-32251011

ABSTRACT

OBJECTIVES: This study quantitatively assesses how cochlear implants (CIs) and vocoder simulations of CIs influence the identification of linguistic and emotional prosody in nontonal languages. By means of meta-analysis, it was explored how accurately CI users and normal-hearing (NH) listeners of vocoder simulations (henceforth: simulation listeners) identify prosody compared with NH listeners of unprocessed speech (henceforth: NH listeners), whether this effect of electric hearing differs between CI users and simulation listeners, and whether the effect of electric hearing is influenced by the type of prosody that listeners identify or by the availability of specific cues in the speech signal. DESIGN: Records were found by searching the PubMed Central, Web of Science, Scopus, Science Direct, and PsycINFO databases (January 2018) using the search terms "cochlear implant prosody" and "vocoder prosody." Records (published in English) were included that reported results of experimental studies comparing CI users' and/or simulation listeners' identification of linguistic and/or emotional prosody in nontonal languages to that of NH listeners (all ages included). Studies that met the inclusion criteria were subjected to a multilevel random-effects meta-analysis. RESULTS: Sixty-four studies reported in 28 records were included in the meta-analysis. The analysis indicated that CI users and simulation listeners were less accurate in correctly identifying linguistic and emotional prosody compared with NH listeners, that the identification of emotional prosody was more strongly compromised by the electric hearing speech signal than linguistic prosody was, and that the low quality of transmission of fundamental frequency (f0) through the electric hearing speech signal was the main cause of compromised prosody identification in CI users and simulation listeners. Moreover, results indicated that the accuracy with which CI users and simulation listeners identified linguistic and emotional prosody was comparable, suggesting that vocoder simulations with carefully selected parameters can provide a good estimate of how prosody may be identified by CI users. CONCLUSIONS: The meta-analysis revealed a robust negative effect of electric hearing, where CIs and vocoder simulations had a similar negative influence on the identification of linguistic and emotional prosody, which seemed mainly due to inadequate transmission of f0 cues through the degraded electric hearing speech signal of CIs and vocoder simulations.


Subject(s)
Cochlear Implantation , Cochlear Implants , Speech Perception , Acoustic Stimulation , Humans , Linguistics , Speech
SELECTION OF CITATIONS
SEARCH DETAIL
...