Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 6539, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34764314

ABSTRACT

In antiferromagnetic spintronics, the read-out of the staggered magnetization or Néel vector is the key obstacle to harnessing the ultra-fast dynamics and stability of antiferromagnets for novel devices. Here, we demonstrate strong exchange coupling of Mn2Au, a unique metallic antiferromagnet that exhibits Néel spin-orbit torques, with thin ferromagnetic Permalloy layers. This allows us to benefit from the well-established read-out methods of ferromagnets, while the essential advantages of antiferromagnetic spintronics are only slightly diminished. We show one-to-one imprinting of the antiferromagnetic on the ferromagnetic domain pattern. Conversely, alignment of the Permalloy magnetization reorients the Mn2Au Néel vector, an effect, which can be restricted to large magnetic fields by tuning the ferromagnetic layer thickness. To understand the origin of the strong coupling, we carry out high resolution electron microscopy imaging and we find that our growth yields an interface with a well-defined morphology that leads to the strong exchange coupling.

2.
Phys Rev Lett ; 127(15): 157203, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34678015

ABSTRACT

We predict a mechanism to controllably manipulate domain walls in kagome antiferromagnets via a single linearly polarized spin-wave source. We show by means of atomistic spin dynamics simulations of antiferromagnets with kagome structure that the speed and direction of the domain wall motion can be regulated by only tuning the frequency of the applied spin wave. Starting from microscopics, we establish an effective action and derive the corresponding equations of motion for the spin-wave-driven domain wall. Our analytical calculations reveal that the coupling of two spin-wave modes inside the domain wall explains the frequency-dependent velocity of the spin texture. Such a highly tunable spin-wave-induced domain wall motion provides a key component toward next-generation fast, energy-efficient, and Joule-heating-free antiferromagnetic insulator devices.

3.
Nat Electron ; 3(7)2020.
Article in English | MEDLINE | ID: mdl-33367204

ABSTRACT

Neuromorphic computing uses basic principles inspired by the brain to design circuits that perform artificial intelligence tasks with superior energy efficiency. Traditional approaches have been limited by the energy area of artificial neurons and synapses realized with conventional electronic devices. In recent years, multiple groups have demonstrated that spintronic nanodevices, which exploit the magnetic as well as electrical properties of electrons, can increase the energy efficiency and decrease the area of these circuits. Among the variety of spintronic devices that have been used, magnetic tunnel junctions play a prominent role because of their established compatibility with standard integrated circuits and their multifunctionality. Magnetic tunnel junctions can serve as synapses, storing connection weights, functioning as local, nonvolatile digital memory or as continuously varying resistances. As nano-oscillators, they can serve as neurons, emulating the oscillatory behavior of sets of biological neurons. As superparamagnets, they can do so by emulating the random spiking of biological neurons. Magnetic textures like domain walls or skyrmions can be configured to function as neurons through their non-linear dynamics. Several implementations of neuromorphic computing with spintronic devices demonstrate their promise in this context. Used as variable resistance synapses, magnetic tunnel junctions perform pattern recognition in an associative memory. As oscillators, they perform spoken digit recognition in reservoir computing and when coupled together, classification of signals. As superparamagnets, they perform population coding and probabilistic computing. Simulations demonstrate that arrays of nanomagnets and films of skyrmions can operate as components of neuromorphic computers. While these examples show the unique promise of spintronics in this field, there are several challenges to scaling up, including the efficiency of coupling between devices and the relatively low ratio of maximum to minimum resistances in the individual devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...