Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 123(22): 221802, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31868426

ABSTRACT

We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9}) eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation.

2.
Rev Sci Instrum ; 90(5): 053307, 2019 May.
Article in English | MEDLINE | ID: mdl-31153256

ABSTRACT

The design and operation of an online energy and spatially resolving detector based on three different scintillators for laser-driven protons are described. The device can be used for a multi-Hertz recording rate. The spatial resolution is <0.5 mm, allowing to retrieve details of the proton beam which is of interest, e.g., for radiographic applications. At the same time, the particle energy is divided into three energy bands between 1 MeV and 5 MeV to retrieve the proton energy spectrum. The absolute response of the detector was calibrated at a conventional proton accelerator.

3.
Phys Rev Lett ; 93(22): 224801, 2004 Nov 26.
Article in English | MEDLINE | ID: mdl-15601095

ABSTRACT

We recently used a new ferrite rf dipole to study spin flipping of a 2.1 GeV/c vertically polarized proton beam stored in the COSY Cooler Synchrotron in Jülich, Germany. We swept the rf dipole's frequency through an rf-induced spin resonance to flip the beam's polarization direction. After determining the resonance's frequency, we varied the frequency range, frequency ramp time, and number of flips. At the rf dipole's maximum strength and optimum frequency range and ramp time, we measured a spin-flip efficiency of 99.92+/-0.04%. This result, along with a similar 0.49 GeV/c IUCF result, indicates that, due to the Lorentz invariance of an rf dipole's transverse integralBdl and the weak energy dependence of its spin-resonance strength, an only 35% stronger rf dipole should allow efficient spin flipping in the 100 GeV BNL RHIC Collider or even the 7 TeV CERN Large Hadron Collider.

SELECTION OF CITATIONS
SEARCH DETAIL
...