Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 66(1): e0154221, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34633841

ABSTRACT

Neisseria gonorrhoeae is an increasing public health threat due to its rapidly rising incidence and antibiotic resistance. There are an estimated 106 million cases per year worldwide, there is no vaccine available to prevent infection, and N. gonorrhoeae strains that are resistant to all antibiotics routinely used to treat the infection have emerged. In many strains, antibiotic resistance is mediated by overexpression of the MtrCDE efflux pump, which enables the bacteria to transport toxic antibiotics out of the cell. Genetic mutations that inactivate MtrCDE have previously been shown to render resistant strains susceptible to certain antibiotics. Here, we show that peptides rationally designed to target and disrupt the activity of each of the three protein components of MtrCDE were able to increase the susceptibility of N. gonorrhoeae strains to antibiotics in a dose-dependent manner and with no toxicity to human cells. Cotreatment of bacteria with subinhibitory concentrations of the peptide led to 2- to 64-fold increases in susceptibility to erythromycin, azithromycin, ciprofloxacin, and/or ceftriaxone in N. gonorrhoeae strains FA1090, WHO K, WHO P, and WHO X. The cotreatment experiments with peptides P-MtrC1 and P-MtrE1 resulted in increased susceptibilities of WHO P and WHO X to azithromycin, ciprofloxacin, and ceftriaxone that were of the same magnitude seen in MtrCDE mutants. P-MtrE1 was able to change the azithromycin resistance profile of WHO P from resistant to susceptible. Data presented here demonstrate that these peptides may be developed for use as a dual treatment with existing antibiotics to treat multidrug-resistant gonococcal infections.


Subject(s)
Gonorrhea , Neisseria gonorrhoeae , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Azithromycin/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Gonorrhea/drug therapy , Gonorrhea/microbiology , Humans , Microbial Sensitivity Tests , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Peptides/metabolism , Peptides/pharmacology , Repressor Proteins/genetics
2.
Adv Healthc Mater ; 11(3): e2102089, 2022 02.
Article in English | MEDLINE | ID: mdl-34716678

ABSTRACT

There is an unmet need for safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines that are stable and can be cost-effectively produced at large scale. Here, a biopolymer particle (BP) vaccine technology that can be quickly adapted to new and emerging variants of SARS-CoV-2 is used. Coronavirus antigen-coated BPs are described as vaccines against SARS-CoV-2. The spike protein subunit S1 or epitopes from S and M proteins (SM) plus/minus the nucleocapsid protein (N) are selected as antigens to either coat BPs during assembly inside engineered Escherichia coli or BPs are engineered to specifically ligate glycosylated spike protein (S1-ICC) produced by using baculovirus expression in insect cell culture (ICC). BP vaccines are safe and immunogenic in mice. BP vaccines, SM-BP-N and S1-ICC-BP induced protective immunity in the hamster SARS-CoV-2 infection model as shown by reduction of virus titers up to viral clearance in lungs post infection. The BP platform offers the possibility for rapid design and cost-effective large-scale manufacture of ambient temperature stable and globally available vaccines to combat the coronavirus disease 2019 (COVID-19) pandemic.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Viral , Cricetinae , Humans , Mice , Polymers , SARS-CoV-2 , Temperature
3.
NPJ Vaccines ; 6(1): 141, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34845267

ABSTRACT

The current Malaria RTS,S vaccine is based on virus-like particles (VLPs) comprising the NANP repetitive epitopes from the cicumsporozoite protein (CSP) of Plasmodium falciparum. This vaccine has limited efficacy, only preventing severe disease in about 30% of vaccinated individuals. A more efficacious vaccine is urgently needed to combat malaria. Here we developed a particulate malaria vaccine based on the same CSP epitopes but using biopolymer particles (BPs) as an antigen carrier system. Specific B- and T-cell epitope-coated BPs were assembled in vivo inside an engineered endotoxin-free mutant of Escherichia coli. A high-yield production process leading to ~27% BP vaccine weight over biomass was established. The epitope-coated BPs were purified and their composition, i.e., the polymer core and epitope identity, was confirmed. Epitope-coated BPs were used alongside soluble peptide epitopes and empty BPs to vaccinate sheep. Epitope-coated BPs showed enhanced immunogenicity by inducing anti-NANP antibody titre of EC50 > 150,000 that were at least 20 times higher than induced by the soluble peptides. We concluded that the additional T-cell epitope was not required as it did not enhance immunogenicity when compared with the B-cell epitope-coated BPs. Antibodies specifically bound to the surface of Plasmodium falciparum sporozoites and efficiently inhibited sporozoite motility and traversal of human hepatocytes. This study demonstrated the utility of biologically self-assembled epitope-coated BPs as an epitope carrier for inclusion in next-generation malaria vaccines.

4.
Biomaterials ; 268: 120597, 2021 01.
Article in English | MEDLINE | ID: mdl-33360074

ABSTRACT

Subunit vaccines are more advantageous than live attenuated vaccines in terms of safety and scale-up manufacture. However, this often comes as a trade-off to their efficacy. Over the years, polymeric nanoparticles have been developed to improve vaccine potency, by engineering their physicochemical properties to incorporate multiple immunological cues to mimic pathogenic microbes and viruses. This review covers recent advances in polymeric nanostructures developed toward particulate vaccines. It focuses on the impact of microbe mimicry (e.g. size, charge, hydrophobicity, and surface chemistry) on modulation of the nanoparticles' delivery, trafficking, and targeting antigen-presenting cells to elicit potent humoral and cellular immune responses. This review also provides up-to-date progresses on rational designs of a wide variety of polymeric nanostructures that are loaded with antigens and immunostimulatory molecules, ranging from particles, micelles, nanogels, and polymersomes to advanced core-shell structures where polymeric particles are coated with lipids, cell membranes, or proteins.


Subject(s)
Nanoparticles , Vaccines , Antigens , Immunity, Cellular , Pandemics , Polymers
5.
Biomacromolecules ; 20(9): 3213-3232, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31122016

ABSTRACT

Spherical polyhydroxyalkanoate (PHA) inclusions are naturally self-assembled inside bacteria. These PHA beads are shell-core structures composed of a hydrophobic PHA core surrounded by proteins, such as PHA synthase (PhaC). PhaC is covalently attached and serves as an anchor protein for foreign protein vaccine candidate antigens. PHA beads displaying single and multiple antigens showed enhanced immunological properties when compared to respective soluble vaccines. This review highlights the unique design space of the PHA bead-based vaccines toward the development of safe and synthetic particulate vaccines. The PHA bead technology will be compared with chemically synthesized polyesters, such as polylactic acids, formulated to deliver vaccine antigens. The performance of PHA bead vaccine candidates to induce specific immune responses and protective immunity against bacterial and viral pathogens in animal trials will be summarized. We propose that the PHA bead technology offers a versatile vaccine platform for design and cost-effective manufacture of synthetic multivalent vaccines.


Subject(s)
Antigens/therapeutic use , Polyesters/therapeutic use , Polyhydroxyalkanoates/therapeutic use , Vaccines/therapeutic use , Antigens/chemistry , Antigens/immunology , Humans , Immunity, Cellular/drug effects , Microspheres , Mycobacterium tuberculosis , Polyesters/chemistry , Polyhydroxyalkanoates/immunology , Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...