Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Undersea Hyperb Med ; 51(1): 71-83, 2024.
Article in English | MEDLINE | ID: mdl-38615356

ABSTRACT

Purpose: Ultrasound imaging is commonly used in decompression research to assess venous gas emboli (VGE) post-dive, with higher loads associated with increased decompression sickness risk. This work examines, for the first time in humans, the performance of a novel electrical impedance spectroscopy technology (I-VED), on possible detection of post-dive bubbles presence and arterial endothelial dysfunction that may be used as markers of decompression stress. Methods: I-VED signals were recorded in scuba divers who performed standardized pool dives before and at set time points after their dives at 35-minute intervals for about two hours. Two distinct frequency components of the obtained signals, Low-Pass Frequency-LPF: 0-0.5 Hz and Band-Pass Frequency-BPF: 0.5-10 Hz, are extracted and respectively compared to VGE presence and known flow-mediated dilation trends for the same dive profile for endothelial dysfunction. Results: Subjects with VGE counts above the median for all subjects were found to have an elevated average LPF compared to subjects with lower VGE counts, although this was not statistically significant (p=0.06), as well as significantly decreased BPF standard deviation post-dive compared to pre-dive (p=0.008). Conclusions: I-VED was used for the first time in humans and operated to provide qualitative in-vivo electrical impedance measurements that may contribute to the assessment of decompression stress. Compared to ultrasound imaging, the proposed method is less expensive, not operator-dependent and compatible with continuous monitoring and application of multiple probes. This study provided preliminary insights; further calibration and validation are necessary to determine I-VED sensitivity and specificity.


Subject(s)
Embolism, Air , Vascular Diseases , Humans , Electric Impedance , Embolism, Air/diagnostic imaging , Embolism, Air/etiology , Arteries , Decompression
2.
Ann Biomed Eng ; 51(6): 1284-1295, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36598594

ABSTRACT

This study aims to develop a phantom that simulates the electrical properties of a human blood vessel surrounded by tissues, inside which bubbles can be infused to mimic Decompression Sickness (DCS) conditions. This phantom may be used to calibrate novel electrical methods for bubbles detection in humans and study bubble dynamics during DCS. It may contribute to the limitation of in-vivo trials and time/effort saving, while its use can be extended to other biomedical applications. To facilitate the design of the phantom, we perform first in-vitro measurements in a flow-loop and in-vivo measurements in a swine, in order to detect infused bubbles of a few tenths µm-representing Decompression Sickness conditions-in the test liquid flow and blood flow, respectively, by means of "I-VED" EU patented electrical impedance spectroscopy technique. Results show that the proposed phantom, consisting of a spongy specimen soaked in agar gel in the presence of electrolyte with a hole along it, simulates adequately the electrical properties of a human blood vessel surrounded by tissues. I-VED demonstrates pretty high sensitivity to sense micro-bubbles over the partially conductive vessel walls of the phantom or the isolated animal vein, as well as in the flow-loop: bubbles presence increases electrical impedance and causes intense signal fluctuations around its mean value.


Subject(s)
Blood Vessels , Decompression Sickness , Phantoms, Imaging , Animals , Humans , Swine
3.
J Colloid Interface Sci ; 302(2): 597-604, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-16854428

ABSTRACT

This work investigates the behavior of small liquid bridges that are formed between two horizontal supporting surfaces, aligned at the vertical direction. The contact lines of the liquid bridges are not edge-pinned but free to move across the supporting surfaces with the contact angle as a parameter (theta-bridges). An a.c. electrical conductance technique coupled with high resolution optical images is used to characterize the geometrical details of constant volume liquid bridges when their length is increased gradually until rupture. A mathematical framework is developed for the identification of the geometrical characteristics of theta-liquid bridges explicitly from conductance data. Theoretical predictions show good agreement with measurements for most of the bridge lengths (separation distance between supports) except close to the rupture point where the bridge is highly stretched. It is further shown that for short and moderate separation distances the present model can be used with confidence to determine the bridge volume and neck radius from the electrical signal.

SELECTION OF CITATIONS
SEARCH DETAIL
...