Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 307
Filter
1.
J Nat Prod ; 87(7): 1888-1892, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38967603

ABSTRACT

Cavoxin (1) was isolated as the main phytotoxin produced by Phoma cava Schulzer, a toxigenic fungus isolated from Castanea spp. Its structure was determined by 1D NMR and MS in 1985 along with that of the corresponding chroman-4-one cavoxone (2), an artifact formed by acid treatment of 1. Since that time cavoxin was shown to be phytotoxic, antifungal, antifeedant, herbicidal, and antirust with potential application in agriculture and medicine. During a study aimed at improving cavoxin's production by P. cava, single crystals for X-ray diffractometric analysis were obtained. The X-ray crystallography characterization confirmed only in part the structure proposed for cavoxin (1), revealing a different substitution pattern on the aromatic ring, as depicted in the revised structure 3.


Subject(s)
Mycotoxins , Crystallography, X-Ray/methods , Molecular Structure , Mycotoxins/chemistry , Mycotoxins/pharmacology , Ascomycota/chemistry , Chromans/chemistry , Chromans/pharmacology
2.
Bioorg Med Chem Lett ; 110: 129863, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38942129

ABSTRACT

Glioblastoma (GBM) is the most common form of malignant primary brain tumor and is one of the most lethal cancers. The difficulty in treating GBM stems from its highly developed mechanisms of drug resistance. Our research team has recently identified the fungal secondary metabolite ophiobolin A (OpA) as an agent with significant activity against drug-resistant GBM cells. However, the OpA's mode of action is likely based on covalent modification of its intracellular target(s) and thus possible off-target reactivity needs to be addressed. This work involves the investigation of an acid-sensitive OpA analogue approach that exploits the elevated acidity of the GBM microenvironment to enhance the selectivity for tumor targeting. This project identified analogues that showed selectivity at killing GBM cells grown in cultures at reduced pH compared to those maintained under normal neutral conditions. These studies are expected to facilitate the development of OpA as an anti-GBM agent by investigating its potential use in an acid-sensitive analogue form with enhanced selectivity for tumor targeting.


Subject(s)
Antineoplastic Agents , Sesterterpenes , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Sesterterpenes/chemistry , Sesterterpenes/pharmacology , Cell Line, Tumor , Hydrogen-Ion Concentration , Glioblastoma/drug therapy , Glioblastoma/pathology , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Molecular Structure , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug
3.
ChemMedChem ; 19(18): e202400288, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38895989

ABSTRACT

We recently discovered that sphaeropsidin A (SphA), a fungal metabolite from Diplodia cupressi, overcomes apoptosis resistance in cancer cells by inducing cellular shrinkage by impairing regulatory volume increase. Previously, we prepared a pyrene-conjugated derivative of SphA by a cross-metathesis reaction involving the phytotoxin's C15,C16-alkene. This derivative's evaluation in a cancer cell panel revealed a significant increase in potency, with the IC50 values 5-10× lower than those displayed by the original natural product. Herein, we describe the preparation and anticancer evaluation of fifteen novel C15,C16-alkene cross-metathesis analogues in which the pyrene moiety was replaced with other aromatic or non-aromatic hydrophobic groups. The idea for this replacement was to prepare a family of compounds that would not be predicted to be mutagenic compared with the original pyrene analogue. We predict several of our new compounds to be non-mutagenic, while retaining the high potency of the original pyrene-containing analogues. Examples of these potential lead compounds included those containing pentamethylphenyl and triphenylethylene pendant groups. As an additional feature of the current investigation, we prepared several deuterated pyrene-containing compounds to overcome intellectual property issues associated with non-patentability of the original pyrene derivative.


Subject(s)
Antineoplastic Agents , Drug Screening Assays, Antitumor , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Pyrenes/chemistry , Pyrenes/pharmacology , Pyrenes/chemical synthesis , Ascomycota/chemistry
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124583, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850611

ABSTRACT

A historical sketch of the MCD (magnetic circular dichroism) spectroscopy is reported in its experimental and theoretical aspects. MCPL (magnetic circularly polarized luminescence) is also considered. The main studies are presented encompassing porphyrinoid systems, aggregates and materials, as well as simple organic molecules useful for the advancement of the interpretation. The MCD of chiral systems is discussed with special attention to new studies of natural products with potential pharmaceutical valence, including Amaryllidaceae alkaloids and related isocarbostyrils. Finally, the vibrational form of MCD, called MVCD, which is recorded in the IR part of the spectrum is also discussed. A final brief note on perspectives is given.

5.
Sci Rep ; 14(1): 14674, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918539

ABSTRACT

Sphaeropsidins are iso-pimarane diterpenes produced by phytopathogenic fungi that display promising anticancer activities. Sphaeropsidin A, in particular, has been shown to counteract regulatory volume increase, a process used by cancer cells to avoid apoptosis. This study reports the hemi-synthesis of new lipophilic derivatives obtained by modifications of the C15,C16-alkene moiety. Several of these compounds triggered severe ER swelling associated with strong proteasomal inhibition and consequently cell death, a feature that was not observed with respect to mode of action of the natural product. Significantly, an analysis from the National Cancer Institute sixty cell line testing did not reveal any correlations between the most potent derivative and any other compound in the database, except at high concentrations (LC50). This study led to the discovery of a new set of sphaeropsidin derivatives that may be exploited as potential anti-cancer agents, notably due to their maintained activity towards multidrug resistant models.


Subject(s)
Endoplasmic Reticulum , Humans , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Abietanes/pharmacology , Abietanes/chemistry
6.
Chemphyschem ; : e202400543, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881499

ABSTRACT

(R)-(-)-Mellein, (3R,4R)-4-hydroxymellein and (3R,4S)-4-hydroxymellein obtained from fungi, i. e. from Diplodia globulosa, were investigated as a class of natural products presenting ESIPT (excited state intramolecular proton transfer) phenomenon, through fluorescence and CPL (circularly polarized luminescence). The study was preceded by the assessment of the absolute configuration through ECD and VCD (electronic and vibrational circular dichroism) spectroscopies in addition to NMR spectra. It is found that ESIPT takes place in these systems very rapidly, and no dual fluorescence has been observed. The experimental study is backed up by TD-DFT calculations of ECD and CPL spectra, plus MD calculations to follow proton transfer in the excited state and careful analysis of the puckering dynamics of the lactone ring. Deprotonated forms of the three compounds were also investigated by the same chiroptical experimental and theoretical methods, showing how one can find in natural compounds not only biological activity but also biologically compatible sensing probes.

7.
Nat Prod Bioprospect ; 14(1): 31, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743184

ABSTRACT

Among microorganisms, fungi are the ones that have the most imagination in producing secondary metabolites with the most varied structural differences, which are produced through different biosynthetic pathways. Therefore, they synthesize secondary metabolites classifiable into numerous families of natural compounds such as amino acids, alkaloids, anthraquinones, aromatic compounds, cyclohexene epoxides, furanones, macrolides, naphthoquinones, polyketides, pyrones, terpenes, etc. They also produced metabolites with very complex structures that can not be classified in the known families of natural compounds. Many fungal metabolites show different biological activities with potential applications in agriculture, food chemistry, cosmetics, pharmacology and medicine. This review is focused on the fungal secondary metabolites with anticancer activity isolated in the last ten years. For some metabolites, when described, their biosynthetic origin, the mode of action and the results of structure activity relationships studies are also reported.

8.
Biomolecules ; 14(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38275763

ABSTRACT

Lampedusa, the largest island of the Pelagie archipelago, Sicily, Italy, has proven to be a rich source of plants and shrubs used in folk medicine. These plants, often native to the island, have been very poorly investigated for their phytochemical composition and biological potential to be translated into pharmacological applications. To start achieving this purpose, a specimen of Limonium lopadusanum, a plant native to Lampedusa, was investigated for the first time. This manuscript reports the results of a preliminary biological assay, focused on antimicrobial activity, carried out using the plant organic extracts, and the isolation and chemical and biological characterization of the secondary metabolites obtained. Thus 3-hydroxy-4-methoxybenzoic acid methyl ester (syn: methyl isovanillate, (1), methyl syringate (2), pinoresinol (3), erythrinassinate C (4) and tyrosol palmitate (5) were isolated. Their antimicrobial activity was tested on several strains and compound 4 showed promising antibacterial activity against Enterococcus faecalis. Thus, this metabolite has antibiotic potential against the drug-resistant opportunistic pathogen E. faecalis.


Subject(s)
Plumbaginaceae , Plumbaginaceae/chemistry , Anti-Bacterial Agents/pharmacology , Plant Extracts/chemistry , Medicine, Traditional , Italy , Microbial Sensitivity Tests
9.
Nat Prod Rep ; 41(3): 434-468, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38131643

ABSTRACT

Covering: 2000 to 2023This review presents the exceptional story of ophiobolin A (OphA) and sphaeropsidin A (SphA), a sesterterpene and a diterpene, respectively, which were initially isolated as fungal phytotoxins and subsequently shown to possess other interesting biological activities, including promising anticancer activities. Ophiobolin A is a phytotoxin produced by different fungal pathogens, all belonging to the Bipolaris genus. Initially, it was only known as a very dangerous phytotoxin produced by fungi attacking essential cereals, such as rice and barley. However, extensive and interesting studies were carried out to define its original carbon skeleton, which is characterized by a typical 5 : 8 : 5 ring system and shared with fusicoccins and cotylenins, and its phytotoxic activity on host and non-host plants. The biosynthesis of OphA was also defined by describing the different steps starting from mevalonate and through the rearrangement of the acyclic C-25 precursor lead the toxin is obtained. OphA was also produced as a bioherbicide from Drechslera gigantea and proposed for the biocontrol of the widespread and dangerous weed Digitaria sanguinaria. To date, more than sixty ophiobolins have been isolated from different fungi and their biological activities and structure-activity relationship investigated, which were also described using their hemisynthetic derivatives. In the last two decades, thorough studies have been performed on the potential anticancer activity of OphA and its original mode of action, attracting great interest from scientists. Sphaeropsidin A has a similar story. It was isolated as the main phytotoxin from Diplodia cupressi, the causal agent of Italian cypress canker disease, resulting in the loss of millions of plants in a few years in the Mediterranean basin. The damage to the forest, environment and ornamental heritage are noteworthy and economic losses are also suffered by tree nurseries and the wood industry. Six natural analogues of SphA were isolated and several interesting hemisynthetic derivatives were prepared to study its structure-activity relationship. Surprisingly, sphaeropsidin A showed other interesting biological activities, including antibiotic, antifungal, and antiviral. In the last decade, extensive studies have focused on the anticancer activity and original mode of action of SphA. Furthermore, specific hemisynthetic studies enable the preparation of derivatives of SphA, preserving its chromophore, which showed a noteworthy increase in anticancer activity. It has been demonstrated that ophiobolin A and sphaeropsidin A are promising natural products showing potent activity against some malignant cancers, such as brain glioblastoma and different melanomas.


Subject(s)
Alkaloids , Diterpenes , Sesterterpenes , Toxins, Biological , Terpenes/pharmacology , Diterpenes/pharmacology , Structure-Activity Relationship
10.
Toxins (Basel) ; 15(12)2023 12 09.
Article in English | MEDLINE | ID: mdl-38133197

ABSTRACT

Ascochyta blight, caused by Ascochyta fabae, poses a significant threat to faba bean and other legumes worldwide. Necrotic lesions on stems, leaves, and pods characterize the disease. Given the economic impact of this pathogen and the potential involvement of secondary metabolites in symptom development, a study was conducted to investigate the fungus's ability to produce bioactive metabolites that might contribute to its pathogenicity. For this investigation, the fungus was cultured in three substrates (Czapek-Dox, PDB, and rice). The produced metabolites were analyzed by NMR and LC-HRMS methods, resulting in the dereplication of seven metabolites, which varied with the cultural substrates. Ascochlorin, ascofuranol, and (R)-mevalonolactone were isolated from the Czapek-Dox extract; ascosalipyrone, benzoic acid, and tyrosol from the PDB extract; and ascosalitoxin and ascosalipyrone from the rice extract. The phytotoxicity of the pure metabolites was assessed at different concentrations on their primary hosts and related legumes. The fungal exudates displayed varying degrees of phytotoxicity, with the Czapek-Dox medium's exudate exhibiting the highest activity across almost all legumes tested. The species belonging to the genus Vicia spp. were the most susceptible, with faba bean being susceptible to all metabolites, at least at the highest concentration tested, as expected. In particular, ascosalitoxin and benzoic acid were the most phytotoxic in the tested condition and, as a consequence, expected to play an important role on necrosis's appearance.


Subject(s)
Fabaceae , Toxins, Biological , Vicia faba , Fabaceae/microbiology , Vicia faba/microbiology , Vegetables , Crops, Agricultural , Benzoic Acid , Plant Extracts
11.
Phys Chem Chem Phys ; 25(34): 22700-22710, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37605892

ABSTRACT

Circularly polarized luminescence (CPL) is increasingly gaining interest not only for its applicative potentialities but also for providing an understanding of the excited state properties of chiral molecules. However, applications of CPL are mainly in the field of materials science: special organic molecules and polymers, metal (lanthanide) complexes, and organic dyes are actively and intensely studied. So far natural compounds have not been investigated much. We fill the gap here by measuring circular dichroism (CD) and CPL of lycorine and narciclasine, the most abundant known alkaloid and isocarbostyril from Amaryllidaceae, which exhibit a large spectrum of biological activities and are promising anticancer compounds. Dual fluorescence detection in narciclasine led us to unveil an occurring excited-state intramolecular proton transfer (ESIPT) process, this mechanism well accounts for the Stokes shift and CPL spectra observed in narciclasine. The same molecule is interesting also as a pH chiroptical switch. Both in absorption and emission, lycorine and narciclasine are also studied computationally via density functional theory (DFT) calculations further shedding light on their properties.

12.
J Fungi (Basel) ; 9(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37367546

ABSTRACT

Different fungal species belonging to the Colletotrichum genus cause anthracnose disease in a range of major crops, resulting in huge economic losses worldwide. Typical symptoms include dark, sunken lesions on leaves, stems, or fruits. Colletotrichum spp. have synthesized, in vitro, a number of biologically active and structurally unusual metabolites that are involved in their host's infection process. In this study, we applied a one strain many compounds (OSMAC) approach, integrated with targeted and non-targeted metabolomics profiling, to shed light on the secondary phytotoxic metabolite panels produced by pathogenic isolates of Colletotrichum truncatum and Colletotrichum trifolii. The phytotoxicity of the fungal crude extracts was also assessed on their primary hosts and related legumes, and the results correlated with the metabolite profile that arose from the different cultural conditions. To the best of our knowledge, this is the first time that the OSMAC strategy integrated with metabolomics approaches has been applied to Colletotrichum species involved in legume diseases.

13.
Molecules ; 28(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37241796

ABSTRACT

The alkaloids are one of the most represented family of natural occurring biological active compounds. Amaryllidaceae are also very well known for their beautiful flower and are thus used as ornamental plants in historic and public gardens. The Amaryllidacea alkaloids constitute an important group that is subdivided into different subfamilies with different carbon skeletons. They are well known from ancient times for their long application in folk medicine, and in particular, Narcissus poeticus L. was known to Hippocrates of Cos (ca. B.C. 460-370), who treated uterine tumors with a formulate prepared from narcissus oil. To date, more than 600 alkaloids of 15 chemical groups exhibiting various biological activities have been isolated from the Amaryllidaceae plants. This plant genus is diffused in regions of Southern Africa, Andean South America and the Mediterranean basin. Thus, this review describes the chemical and biological activity of the alkaloids collected in these regions in the last two decades as weel those of isocarbostyls isolated from Amaryllidaceae in the same regions and same period.


Subject(s)
Alkaloids , Amaryllidaceae Alkaloids , Amaryllidaceae , Narcissus , Plant Extracts/chemistry , South Africa , Narcissus/chemistry , Amaryllidaceae Alkaloids/chemistry
15.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239812

ABSTRACT

Radicinin is a phytotoxic dihydropyranopyran-4,5-dione isolated from the culture filtrates of Cochliobolus australiensis, a phytopathogenic fungus of the invasive weed buffelgrass (Cenchrus ciliaris). Radicinin proved to have interesting potential as a natural herbicide. Being interested in elucidating the mechanism of action and considering radicinin is produced in small quantities by C. australiensis, we opted to use (±)-3-deoxyradicinin, a synthetic analogue of radicinin that is available in larger quantities and shows radicinin-like phytotoxic activities. To obtain information about subcellular targets and mechanism(s) of action of the toxin, the study was carried out by using tomato (Solanum lycopersicum L.), which, apart from its economic relevance, has become a model plant species for physiological and molecular studies. Results of biochemical assays showed that (±)-3-deoxyradicinin administration to leaves induced chlorosis, ion leakage, hydrogen peroxide production, and membrane lipid peroxidation. Remarkably, the compound determined the uncontrolled opening of stomata, which, in turn, resulted in plant wilting. Confocal microscopy analysis of protoplasts treated with (±)-3-deoxyradicinin ascertained that the toxin targeted chloroplasts, eliciting an overproduction of reactive singlet oxygen species. This oxidative stress status was related by qRT-PCR experiments to the activation of transcription of genes of a chloroplast-specific pathway of programmed cell death.


Subject(s)
Cenchrus , Solanum lycopersicum , Toxins, Biological , Fungi , Chloroplasts , Reactive Oxygen Species , Oxidative Stress
16.
Microorganisms ; 11(4)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37110266

ABSTRACT

Weeds such as parasite plants are one of the most serious pests that farmers are forced to combat since the development of agriculture using different methods including mechanic and agronomy strategies. These pests have generated significant losses of agrarian and herding production, constituting a serious impediment for agricultural activities in reforestation practices and in important infrastructures. All these serious problems have induced the expansive and massive use of synthetic herbicides, which represents one of the main cause of environmental pollution, as well as serious risks for human and animal health. An alternative environmental friendly control method could be the use of bioherbicides based on suitably bioformulated natural products, of which the main ones are fungal phytotoxins. This review covers the literature from 1980 to the present (2022) and concerns fungal phytotoxins with potential herbicidal activity in order to obtain their efficacy as bioherbicides for practical application in agriculture. Furthermore, some bioherbicides based on microbial toxic metabolites are commercially available, and their application in field, mode of action and future perspectives are also discussed.

17.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982189

ABSTRACT

Fungal phytotoxins can be defined as secondary metabolites toxic to host plants and are believed to be involved in the symptoms developed of a number of plant diseases by targeting host cellular machineries or interfering with host immune responses. As any crop, legumes can be affected by a number of fungal diseases, causing severe yield losses worldwide. In this review, we report and discuss the isolation, chemical, and biological characterization of fungal phytotoxins produced by the most important necrotrophic fungi involved in legume diseases. Their possible role in plant-pathogen interaction and structure-toxicity relationship studies have also been reported and discussed. Moreover, multidisciplinary studies on other prominent biological activity conducted on reviewed phytotoxins are described. Finally, we explore the challenges in the identification of new fungal metabolites and their possible applications in future experiments.


Subject(s)
Fabaceae , Toxins, Biological , Toxins, Biological/metabolism , Plants/metabolism , Vegetables , Fungi/metabolism , Plant Diseases/microbiology
18.
Plants (Basel) ; 11(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36559555

ABSTRACT

Major threats to the human lifespan include cancer, infectious diseases, diabetes, mental degenerative conditions and also reduced agricultural productivity due to climate changes, together with new and more devastating plant diseases. From all of this, the need arises to find new biopesticides and new medicines. Plants and microorganisms are the most important sources for isolating new metabolites. Lampedusa Island host a rich contingent of endemic species and subspecies. Seven plant species spontaneously growing in Lampedusa, i.e., Atriplex halimus L. (Ap), Daucus lopadusanus Tineo (Dl), Echinops spinosus Fiori (Es) Glaucium flavum Crantz (Gf) Hypericum aegypticum L: (Ha), Periploca angustifolia Labill (Pa), and Prasium majus L. (Pm) were collected, assessed for their metabolite content, and evaluated for potential applications in agriculture and medicine. The HPLC-MS analysis of n-hexane (HE) and CH2Cl2 (MC) extracts and the residual aqueous phases (WR) showed the presence of several metabolites in both organic extracts. Crude HE and MC extracts from Dl and He significantly inhibited butyrylcholinesterase, as did WR from the extraction of Dl and Pa. HE and MC extracts showed a significant toxicity towards hepatocarcinoma Huh7, while Dl, Ha and Er HE extracts were the most potently cytotoxic to ileocecal colorectal adenocarcinoma HCT-8 cell lines. Most extracts showed antiviral activity. At the lowest concentration tested (1.56 µg/mL), Dl, Gf and Ap MC extracts inhibited betacoronavirus HCoV-OC43 infection by> 2 fold, while the n-hexane extract of Pm was the most potent. In addition, at 1.56 µg/mL, potent inhibition (>10 fold) of dengue virus was detected for Dl, Er, and Pm HE extracts, while Pa and Ap MC extracts dampened infections to undetectable levels. Regarding to phytotoxicity, MC extracts from Er, Ap and Pm were more effective in inhibiting tomato rootlet elongation; the same first two extracts also inhibited seed cress germination while its radicle elongation, due to high sensitivity, was affected by all the extracts. Es and Gf MC extracts also inhibited seed germination of Phelipanche ramosa. Thus, we have uncovered that many of these Lampedusa plants displayed promising biopesticide, antiviral, and biological properties.

19.
Toxins (Basel) ; 14(12)2022 12 03.
Article in English | MEDLINE | ID: mdl-36548747

ABSTRACT

Microorganisms, virus, weeds, parasitic plants, insects, and nematodes are among the enemies that induce severe economic losses to agrarian production. Farmers have been forced to combat these enemies using different methods, including mechanical and agronomic strategies, since the beginning of agriculture. The development of agriculture, due to an increased request for food production, which is a consequence to the rapid and noteworthy growth of the world's population, requires the use of more efficient methods to strongly elevate the yield production. Thus, in the last five-to-six decades, a massive and extensive use of chemicals has occurred in agriculture, resulting in heavy negative consequences, such as the increase in environmental pollution and risks for human and animal health. These problems increased with the repetition of treatments, which is due to resistance that natural enemies developed against this massive use of pesticides. There are new control strategies under investigation to develop products, namely biopesticides, with high efficacy and selectivity but based on natural products which are not toxic, and which are biodegradable in a short time. This review is focused on the microbial and plant metabolites with nematocidal activity with potential applications in suitable formulations in greenhouses and fields.


Subject(s)
Nematoda , Pesticides , Animals , Humans , Pesticides/toxicity , Antinematodal Agents , Plants , Agriculture/methods
20.
Int J Mol Sci ; 23(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36293201

ABSTRACT

Natural products are a vital source for agriculture, medicine, cosmetics and other fields. Lipodepsipeptides (LPDs) are a wide group of natural products distributed among living organisms such as bacteria, fungi, yeasts, virus, insects, plants and marine organisms. They are a group of compounds consisting of a lipid connected to a peptide, which are able to self-assemble into several different structures. They have shown different biological activities such as phytotoxic, antibiotic, antiviral, antiparasitic, antifungal, antibacterial, immunosuppressive, herbicidal, cytotoxic and hemolytic activities. Their biological activities seem to be due to their interactions with the plasma membrane (MP) because they are able to mimic the architecture of the native membranes interacting with their hydrophobic segment. LPDs also have surfactant properties. The review has been focused on the lipodepsipeptides isolated from fungal and bacterial sources, on their biological activity, on the structure-activity relationships of some selected LPD subgroups and on their potential application in agriculture and medicine. The chemical and biological characterization of lipodepsipeptides isolated in the last three decades and findings that resulted from SCI-FINDER research are reported. A critical evaluation of the most recent reviews dealing with the same argument has also been described.


Subject(s)
Biological Products , Fungi , Fungi/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Bacteria/metabolism , Biological Products/chemistry , Anti-Bacterial Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Lipids , Surface-Active Agents/metabolism , Antiparasitic Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL