Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15751, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977750

ABSTRACT

The need for intubation in methanol-poisoned patients, if not predicted in time, can lead to irreparable complications and even death. Artificial intelligence (AI) techniques like machine learning (ML) and deep learning (DL) greatly aid in accurately predicting intubation needs for methanol-poisoned patients. So, our study aims to assess Explainable Artificial Intelligence (XAI) for predicting intubation necessity in methanol-poisoned patients, comparing deep learning and machine learning models. This study analyzed a dataset of 897 patient records from Loghman Hakim Hospital in Tehran, Iran, encompassing cases of methanol poisoning, including those requiring intubation (202 cases) and those not requiring it (695 cases). Eight established ML (SVM, XGB, DT, RF) and DL (DNN, FNN, LSTM, CNN) models were used. Techniques such as tenfold cross-validation and hyperparameter tuning were applied to prevent overfitting. The study also focused on interpretability through SHAP and LIME methods. Model performance was evaluated based on accuracy, specificity, sensitivity, F1-score, and ROC curve metrics. Among DL models, LSTM showed superior performance in accuracy (94.0%), sensitivity (99.0%), specificity (94.0%), and F1-score (97.0%). CNN led in ROC with 78.0%. For ML models, RF excelled in accuracy (97.0%) and specificity (100%), followed by XGB with sensitivity (99.37%), F1-score (98.27%), and ROC (96.08%). Overall, RF and XGB outperformed other models, with accuracy (97.0%) and specificity (100%) for RF, and sensitivity (99.37%), F1-score (98.27%), and ROC (96.08%) for XGB. ML models surpassed DL models across all metrics, with accuracies from 93.0% to 97.0% for DL and 93.0% to 99.0% for ML. Sensitivities ranged from 98.0% to 99.37% for DL and 93.0% to 99.0% for ML. DL models achieved specificities from 78.0% to 94.0%, while ML models ranged from 93.0% to 100%. F1-scores for DL were between 93.0% and 97.0%, and for ML between 96.0% and 98.27%. DL models scored ROC between 68.0% and 78.0%, while ML models ranged from 84.0% to 96.08%. Key features for predicting intubation necessity include GCS at admission, ICU admission, age, longer folic acid therapy duration, elevated BUN and AST levels, VBG_HCO3 at initial record, and hemodialysis presence. This study as the showcases XAI's effectiveness in predicting intubation necessity in methanol-poisoned patients. ML models, particularly RF and XGB, outperform DL counterparts, underscoring their potential for clinical decision-making.


Subject(s)
Artificial Intelligence , Machine Learning , Methanol , Humans , Methanol/poisoning , Male , Female , Deep Learning , Intubation, Intratracheal/methods , Iran , Adult , Middle Aged , ROC Curve
2.
Daru ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771458

ABSTRACT

BACKGROUND: Treatment management for opioid poisoning is critical and, at the same time, requires specialized knowledge and skills. This study was designed to develop and evaluate machine learning algorithms for predicting the maintenance dose and duration of hospital stay in opioid poisoning, in order to facilitate appropriate clinical decision-making. METHOD AND RESULTS: This study used artificial intelligence technology to predict the maintenance dose and duration of administration by selecting clinical and paraclinical features that were selected by Pearson correlation (filter method) (Stage 1) and then the (wrapper method) Recursive Feature Elimination Cross-Validated (RFECV) (Stage2). The duration of administration was divided into two categories: A (which includes a duration of less than or equal to 24 h of infusion) and B (more than 24 h of naloxone infusion). XGBoost algorithm model with an accuracy rate of 91.04%, a prediction rate of 91.34%, and a sensitivity rate of 91.04% and area under the Curve (AUC) 0.97 was best model for classification patients. Also, the best maintenance dose of naloxone was obtained with XGBoost algorithm with R2 = 0.678. Based on the selected algorithm, the most important features for classifying patients for the duration of treatment were bicarbonate, respiration rate, physical sign, The partial pressure of carbon dioxide (PCO2), diastolic blood pressure, pulse rate, naloxone bolus dose, Blood Creatinine(Cr), Body temperature (T). The most important characteristics for determining the maintenance dose of naloxone were physical signs, bolus dose of 4.5 mg/kg, Glasgow Coma Scale (GCS), Creatine Phosphokinase (CPK) and intensive care unit (ICU) add. CONCLUSION: A predictive model can significantly enhance the decision-making and clinical care provided by emergency physicians in hospitals and medical settings. XGBoost was found to be the superior model.

3.
Toxicology ; 504: 153770, 2024 May.
Article in English | MEDLINE | ID: mdl-38458534

ABSTRACT

Methanol poisoning is a global public health concern, especially prevalent in developing nations. This study focuses on predicting the severity of methanol intoxication using machine learning techniques, aiming to improve early identification and prognosis assessment. The study, conducted at Loghman Hakim Hospital in Tehran, Iran. The data pertaining to individuals afflicted with methanol poisoning was retrieved retrospectively and divided into training and test groups at a ratio of 70:30. The selected features were then inputted into various machine learning methods. The models were implemented using the Scikit-learn library in the Python programming language. Ultimately, the efficacy of the developed models was assessed through ten-fold cross-validation techniques and specific evaluation criteria, with a confidence level of 95%. A total number of 897 patients were included and divided in three groups including without sequel (n = 573), with sequel (n = 234), and patients who died (n = 90). The two-step feature selection was yielded 43 features in first step and 23 features in second step. In best model (Gradient Boosting Classifier) test dataset metric by 32 features younger age, higher methanol ingestion, respiratory symptoms, lower GCS scores, type of visual symptom, duration of therapeutic intervention, ICU admission, and elevated CPK levels were among the most important features predicting the prognosis of methanol poisoning. The Gradient Boosting Classifier demonstrated the highest predictive capability, achieving AUC values of 0.947 and 0.943 in the test dataset with 43 and 23 features, respectively. This research introduces a machine learning-driven prognostic model for methanol poisoning, demonstrating superior predictive capabilities compared to traditional statistical methods. The identified features provide valuable insights for early intervention and personalized treatment strategies.


Subject(s)
Machine Learning , Methanol , Humans , Male , Female , Adult , Retrospective Studies , Prognosis , Methanol/poisoning , Middle Aged , Iran/epidemiology , Young Adult , Poisoning/diagnosis , Poisoning/therapy
4.
BMC Med Inform Decis Mak ; 24(1): 38, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321428

ABSTRACT

BACKGROUND: Hemodialysis is a life-saving treatment used to eliminate toxins and metabolites from the body during poisoning. Despite its effectiveness, there needs to be more research on this method precisely, with most studies focusing on specific poisoning. This study aims to bridge the existing knowledge gap by developing a machine-learning prediction model for forecasting the prognosis of the poisoned patient undergoing hemodialysis. METHODS: Using a registry database from 2016 to 2022, this study conducted a retrospective cohort study at Loghman Hakim Hospital. First, the relief feature selection algorithm was used to identify the most important variables influencing the prognosis of poisoned patients undergoing hemodialysis. Second, four machine learning algorithms, including extreme gradient boosting (XGBoost), histgradient boosting (HGB), k-nearest neighbors (KNN), and adaptive boosting (AdaBoost), were trained to construct predictive models for predicting the prognosis of poisoned patients undergoing hemodialysis. Finally, the performance of paired feature selection and machine learning (ML) algorithm were evaluated to select the best models using five evaluation metrics including accuracy, sensitivity, specificity the area under the curve (AUC), and f1-score. RESULT: The study comprised 980 patients in total. The experimental results showed that ten variables had a significant influence on prognosis outcomes including age, intubation, acidity (PH), previous medical history, bicarbonate (HCO3), Glasgow coma scale (GCS), intensive care unit (ICU) admission, acute kidney injury, and potassium. Out of the four models evaluated, the HGB classifier stood out with superior results on the test dataset. It achieved an impressive mean classification accuracy of 94.8%, a mean specificity of 93.5 a mean sensitivity of 94%, a mean F-score of 89.2%, and a mean receiver operating characteristic (ROC) of 92%. CONCLUSION: ML-based predictive models can predict the prognosis of poisoned patients undergoing hemodialysis with high performance. The developed ML models demonstrate valuable potential for providing frontline clinicians with data-driven, evidence-based tools to guide time-sensitive prognosis evaluations and care decisions for poisoned patients in need of hemodialysis. Further large-scale multi-center studies are warranted to validate the efficacy of these models across diverse populations.


Subject(s)
Poisons , Humans , Retrospective Studies , Prognosis , Renal Dialysis , Algorithms
5.
Toxicology ; 486: 153431, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36682461

ABSTRACT

Poisoning with organophosphate compounds is a significant public health risk, especially in developing countries. Considering the importance of early and accurate prediction of organophosphate poisoning prognosis, the aim of this study was to develop a machine learning-based prediction model to predict the severity of organophosphate poisoning. The data of patients with organophosphate poisoning were retrospectively extracted and split into training and test sets in a ratio of 70:30. The feature selection was done by least absolute shrinkage and selection operator method. Selected features were fed into five machine learning techniques, including Histogram Boosting Gradient, eXtreme Gradient Boosting, K-Nearest Neighborhood, Support Vector Machine (SVM) (kernel = linear), and Random Forest. The Scikit-learn library in Python programming language was used to implement the models. Finally, the performance of developed models was measured using ten-fold cross-validation methods and some evaluation criteria with 95 % confidence intervals. A total of 1237 patients were used to train and test the machine learning models. According to the criteria determining severe organophosphate poisoning, 732 patients were assigned to group 1 (patients with mild to moderate poisoning) and 505 patients were assigned to group 2 (patients with severe poisoning). With an AUC value of 0.907 (95 % CI 0.89-0.92), the model developed using XGBoost outperformed other models. Feature importance evaluation found that venous blood gas-pH, white blood cells, and plasma cholinesterase activity were the top three variables that contribute the most to the prediction performance of the prognosis in patients with organophosphate poisoning. XGBoost model yield an accuracy of 90.1 % (95 % CI 0.891-0.918), specificity of 91.4 % (95 % CI 0.90-0.92), a sensitivity of 89.5 % (95 % CI 0.87-0.91), F-measure of 91.2 % (95 % CI 0.90-0.921), and Kappa statistic of 91.2 % (95 % CI 0.90-0.92). The machine learning-based prediction models can accurately predict the severity of organophosphate poisoning. Based on feature selection techniques, the most important predictors of organophosphate poisoning were VBG-pH, white blood cell count, plasma cholinesterase activity, VBG-BE, and age. The best algorithm with the highest predictive performance was the XGBoost classifier.


Subject(s)
Organophosphate Poisoning , Humans , Organophosphate Poisoning/diagnosis , Retrospective Studies , Algorithms , Machine Learning , Cholinesterases
6.
Clin Case Rep ; 10(11): e6341, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36381053

ABSTRACT

Serotonin syndrome is a potentially life-threatening adverse drug reaction typically caused by a single or combination of two or more medications with serotonergic properties due to increased serotonin release. Our case is a 60-year-old drug-addict man who was admitted to the poisoning department of Loghman hospital with methadone poisoning. On the fifth day of hospitalization and after initiating the linezolid treatment for VAP, the patient began to run a fever with agitation, tremor, spontaneous clonus movement in the hands, and tachycardia. Due to patients' manifestations and after ruling out other diagnoses, serotonin syndrome was confirmed with the possibility of concomitant use of linezolid and methadone. Linezolid administration was promptly discontinued, and vancomycin therapy was initiated (1000 mg twice a day intravenously). Supportive therapies were performed. Finally, tremor, rigidity, and clonus movement disappeared within 48 h.

7.
Clin Case Rep ; 10(10): e6419, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36245450

ABSTRACT

This case report described an improved case of colchicine poisoning using hemoperfusion and hemodialysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...