Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol Evol ; 9(9): 2444-2460, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28957460

ABSTRACT

Lycopodiophyta-consisting of three orders, Lycopodiales, Isoetales and Selaginellales, with different types of shoot apical meristems (SAMs)-form the earliest branch among the extant vascular plants. They represent a sister group to all other vascular plants, from which they differ in that their leaves are microphylls-that is, leaves with a single, unbranched vein, emerging from the protostele without a leaf gap-not megaphylls. All leaves represent determinate organs originating on the flanks of indeterminate SAMs. Thus, leaf formation requires the suppression of indeterminacy, that is, of KNOX transcription factors. In seed plants, this is mediated by different groups of transcription factors including ARP and YABBY.We generated a shoot tip transcriptome of Huperzia selago (Lycopodiales) to examine the genes involved in leaf formation. Our H. selago transcriptome does not contain any ARP homolog, although transcriptomes of Selaginella spp. do. Surprisingly, we discovered a YABBY homolog, although these transcription factors were assumed to have evolved only in seed plants.The existence of a YABBY homolog in H. selago suggests that YABBY evolved already in the common ancestor of the vascular plants, and subsequently was lost in some lineages like Selaginellales, whereas ARP may have been lost in Lycopodiales. The presence of YABBY in the common ancestor of vascular plants would also support the hypothesis that this common ancestor had a simplex SAM. Furthermore, a comparison of the expression patterns of ARP in shoot tips of Selaginella kraussiana (Harrison CJ, etal. 2005. Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 434(7032):509-514.) and YABBY in shoot tips of H. selago implies that the development of microphylls, unlike megaphylls, does not seem to depend on the combined activities of ARP and YABBY. Altogether, our data show that Lycopodiophyta are a diverse group; so, in order to understand the role of Lycopodiophyta in evolution, representatives of Lycopodiales, Selaginellales, as well as of Isoetales, have to be examined.


Subject(s)
Evolution, Molecular , Huperzia/genetics , Plant Leaves/genetics , Plant Shoots/genetics , Transcriptome , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Huperzia/growth & development , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Photosynth Res ; 133(1-3): 357-370, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28382592

ABSTRACT

The lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition. In this study, the lateral mobility (the mobile fraction size) of pigment-protein complexes and lipids in grana membranes was analyzed in chlorina mutants of Arabidopsis and barley lacking Chlb. In the Arabidopsis ch1-3 mutant, diffusion of membrane lipids decreased as compared to wild-type plants, but the diffusion of photosynthetic complexes was not affected. In the barley chlorina f2 3613 mutant, the diffusion of pigment-protein complexes significantly decreased, while the diffusion of lipids increased, as compared to wild-type plants. We propose that the size of the mobile fractions of pigment-protein complexes in grana membranes in vivo is higher than reported previously. The data are discussed in the context of the protein composition of antennae, characteristics of the plastoquinone pool, and production of reactive oxygen species in leaves of chlorina mutants.


Subject(s)
Arabidopsis/metabolism , Chlorophyll/metabolism , Hordeum/metabolism , Lipids/chemistry , Mutation/genetics , Photosynthesis , Thylakoids/metabolism , Arabidopsis/radiation effects , Fluorescence , Fluorescence Recovery After Photobleaching , Hordeum/radiation effects , Light , Light-Harvesting Protein Complexes/metabolism , Oxygenases/metabolism , Photosynthesis/radiation effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plastoquinone/metabolism , Thylakoids/radiation effects
3.
Plant Signal Behav ; 12(4): e1300732, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28272988

ABSTRACT

In plants, organogenesis and specification of cell layers and tissues rely on precise symplastic delivery of regulatory molecules via plasmodesmata. Accordingly, abundance and aperture of plasmodesmata at individual cell boundaries should be controlled by the plant. Recently, studies in Arabidopsis established reactive oxygen species as major regulators of plasmodesmata formation and gating. We show that in a barley mutant deficient in the synthesis of chlorophyll b, the numbers of plasmodesmata in leaves and in the shoot apical meristem are significantly higher than in the corresponding wild type, probably due to redox imbalance in the mutant. The resulting disturbance of symplasmic transport is likely to be the reason for the observed delayed floral transition in these mutants.


Subject(s)
Flowers/metabolism , Hordeum/metabolism , Plant Proteins/metabolism , Chlorophyll/genetics , Chlorophyll/metabolism , Flowers/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Hordeum/genetics , Meristem/genetics , Meristem/metabolism , Plant Proteins/genetics , Plasmodesmata/genetics , Plasmodesmata/metabolism , Reactive Oxygen Species/metabolism , Singlet Oxygen/metabolism
4.
Front Plant Sci ; 5: 31, 2014.
Article in English | MEDLINE | ID: mdl-24575105

ABSTRACT

Plasmodesmata (PD) serve for the exchange of information in form of miRNA, proteins, and mRNA between adjacent cells in the course of plant development. This fundamental role of PD is well established in angiosperms but has not yet been traced back to the evolutionary ancient plant taxa where functional studies lag behind studies of PD structure and ontogenetic origin. There is convincing evidence that the ability to form secondary (post-cytokinesis) PD, which can connect any adjacent cells, contrary to primary PD which form during cytokinesis and link only cells of the same lineage, appeared in the evolution of higher plants at least twice: in seed plants and in some representatives of the Lycopodiophyta. The (in)ability to form secondary PD is manifested in the symplasmic organization of the shoot apical meristem (SAM) which in most taxa of seedless vascular plants differs dramatically from that in seed plants. Lycopodiophyta appear to be suitable models to analyze the transport of developmental regulators via PD in SAMs with symplasmic organization both different from, as well as analogous to, that in angiosperms, and to understand the evolutionary aspects of the role of this transport in the morphogenesis of vascular plant taxa.

SELECTION OF CITATIONS
SEARCH DETAIL
...