Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 187(4): 179, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25773895

ABSTRACT

The aim of this study was to simulate impacts of regional climate change in the 2070s on carbon (C) cycle of a Mediterranean watershed combining field measurements, Envisat MERIS and IKONOS data, and the Carnegie Ames Stanford Approach model. Simulation results indicated that the present total C sink status (1.36 Mt C year(-1)) of Mediterranean evergreen needleleaf forest, grassland and cropland ecosystems is expected to weaken by 7.6% in response to the climate change in the 2070s (Mt=10(12) g). This decreasing trend was mirrored in soil respiration (R H), aboveground and belowground net primary production (NPP), NEP, and net biome production (NBP). The decrease in NEP in the 2070s was the highest (21.9%) for mixed forest where the smallest present C sink of 0.03 Mt C year(-1) was estimated. The average present net ecosystem production (NEP) values were estimated at 110±15, 75±19, and 41±25 g C m(-2) years(-1) in forest, grassland, and cropland, respectively, with a watershed-scale mean of 95±30 g C m(-2) years(-1). The largest present C sink was in grassland, with a total C pool of 0.55 Mt C year(-1), through its greater spatial extent.


Subject(s)
Carbon Cycle , Carbon/analysis , Environmental Monitoring/methods , Models, Theoretical , Remote Sensing Technology , Climate , Climate Change , Ecosystem , Mediterranean Region , Soil
2.
Environ Monit Assess ; 165(1-4): 125-36, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19444637

ABSTRACT

Big Melen stream is one of the major water resources providing 0.268 [corrected] km(3) year(-1) of drinking and municipal water for Istanbul. Monthly time series data between 1991 and 2004 for 25 chemical, biological, and physical water properties of Big Melen stream were separated into linear trend, seasonality, and error components using additive decomposition models. Water quality index (WQI) derived from 17 water quality variables were used to compare Aksu upstream and Big Melen downstream water quality. Twenty-six additive decomposition models of water quality time series data including WQI had R (2) values ranging from 88% for log(water temperature) (P < or = 0.001) to 3% for log(total dissolved solids) (P < or = 0.026). Linear trend models revealed that total hardness, calcium concentration, and log(nitrite concentration) had the highest rate of increase over time. Tukey's multiple comparison pointed to significant decreases in 17 water quality variables including WQI of Big Melen downstream relative to those of Aksu upstream (P < or = 0.001). Monitoring changes in water quality on the basis of watersheds through WQI and decomposition analysis of time series data paves the way for an adaptive management process of water resources that can be tailored in response to effectiveness and dynamics of management practices.


Subject(s)
Fresh Water/chemistry , Water/chemistry , Environmental Monitoring/methods , Turkey
3.
Environ Monit Assess ; 131(1-3): 293-300, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17171268

ABSTRACT

The Intergovernmental Panel on Climate Change (IPCC) reports an acceleration of the global mean sea-level rise (MSLR) in the twentieth century in response to global climate change. If this acceleration remains constant, then some coastal areas are most likely to be inundated by the year 2100. The ability to identify the differential vulnerability of coastlines to future inundation hazards as result of global climate change is necessary for timely actions to be taken. Yildiz et al. (Journal of Mapping, 17, 1-75, 2003) reported that the local MSLR in the city of Izmir rose at a rate of 6.8 +/- 0.9 mm year(-1) between 1984 and 2002. In this study, the spatial distribution of the coastal inundation hazards of Izmir region was determined using not only land-use and land-cover (LULC) types derived from the maximum likelihood classification of Landsat-7 Enhanced Thematic Mapper Plus (ETM+) multi-spectral image set but also the classification of the digital elevation model (DEM) acquired by the shuttle radar topography mission (SRTM). Coastal areas with elevations of 2 and 5 m above mean sea-level vulnerable to inundation were found to cover 2.1 and 3.7% of the study region (6,107 km(2)), respectively. Our findings revealed that Menemen plain along Gediz river, and the settlements of Karsiyaka, Alacati, Aliaga, Candarli and Selcuk are at high risk in order of decreasing vulnerability to permanent and episodic inundation by 2100 under the high MSLR scenarios of 20 to 50 mm year(-1).


Subject(s)
Disasters , Geographic Information Systems , Risk Assessment/methods , Turkey
4.
Environ Monit Assess ; 114(1-3): 157-68, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16565806

ABSTRACT

Unprecedented rates of human-induced changes in land use and land cover (LULC) at local and regional scales lead to alterations of global biogeochemical cycles. Driving forces behind LULC changes mainly include rapid growth rates of population and consumption, lack of valuation of ecological services, poverty, ignorance of biophysical limitations, and use of ecologically incompatible technologies. One of the major ecological tragedies of the commons in a Mediterranean region of Turkey is the loss of Lake Amik at the expense of increasing the area of croplands, which used to provide vital ecosystem goods and services for the region. In this study, we aimed at quantifying the effects of past land-use transitions on soil organic carbon (SOC) pools (0-20 cm) in a Mediterranean region of 3930 km(2), between 1972 and 2000. LULC changes were quantified from a time series of satellite images of Landsat-MSS in 1972, Landsat-5 TM in 1987, and Landsat-7 ETM+ in 2000 using geographic information systems. The study showed that the increase in croplands between 1972 and 1987 took place at the expense of the irreversible losses of Lake Amik and its related wetlands of over 53 km(2). In the period of 1972 to 2000, croplands, settlements, and evergreen forests increased by 174%, 106%, and 14%, respectively. The increase in settlements occurred mostly to the detriment of croplands. Given the average rates of all the land-use transitions, and associated changes in SOC density for the study region of 3930 km(2), total SOC pool was estimated to decrease by 14.1% from 130.1 Mt in 1972 to 111.7 Mt in 2000.


Subject(s)
Agriculture/trends , Conservation of Natural Resources , Environmental Monitoring/methods , Environmental Pollution/analysis , Urbanization/trends , Mediterranean Sea , Time Factors , Turkey , Wetlands
5.
Environ Manage ; 26(5): 479-89, 2000 Nov.
Article in English | MEDLINE | ID: mdl-10982726

ABSTRACT

In recent years, Turkey has experienced rapid economic and population growth coupled with both an equally rapid increase in energy consumption and a vast disparity in welfare between socioeconomic groups and regions. In turn, these pressures have accelerated the destruction of productive, assimilative, and regenerative capacities of the ecosystems, which are essential for the well-being of the people and the economy. This paper describes the structure and function of major ecosystem types in Turkey and discusses the underlying causes of environmental degradation in the framework of economy, energy, environment, and ethics. From a national perspective, this paper suggests three sustainability-based policies necessary for Turkey's long-term interests that balance economic, environmental, and energy goals: (1) decoupling economic growth from energy consumption growth through the development of energy-efficient and renewable energy technologies; (2) linking economic efficiency and distributive justice of wealth and power through distributive and participatory public policies; and (3) integrating the economic and ecological systems through the internalization of externalities and ecosystem rehabilitation.

SELECTION OF CITATIONS
SEARCH DETAIL
...