Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 6508, 2018 04 25.
Article in English | MEDLINE | ID: mdl-29695723

ABSTRACT

Transplantation of encapsulated islets can cure diabetes without immunosuppression, but oxygen supply limitations can cause failure. We investigated a retrievable macroencapsulation device wherein islets are encapsulated in a planar alginate slab and supplied with exogenous oxygen from a replenishable gas chamber. Translation to clinically-useful devices entails reduction of device size by increasing islet surface density, which requires increased gas chamber pO2. Here we show that islet surface density can be substantially increased safely by increasing gas chamber pO2 to a supraphysiological level that maintains all islets viable and functional. These levels were determined from measurements of pO2 profiles in islet-alginate slabs. Encapsulated islets implanted with surface density as high as 4,800 islet equivalents/cm3 in diabetic rats maintained normoglycemia for more than 7 months and provided near-normal intravenous glucose tolerance tests. Nearly 90% of the original viable tissue was recovered after device explantation. Damaged islets failed after progressively shorter times. The required values of gas chamber pO2 were predictable from a mathematical model of oxygen consumption and diffusion in the device. These results demonstrate feasibility of developing retrievable macroencapsulated devices small enough for clinical use and provide a firm basis for design of devices for testing in large animals and humans.


Subject(s)
Cell Survival/physiology , Islets of Langerhans Transplantation/physiology , Islets of Langerhans/metabolism , Islets of Langerhans/physiology , Oxygen/metabolism , Alginates/metabolism , Animals , Blood Glucose/metabolism , Blood Glucose/physiology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Glucose Tolerance Test/methods , Graft Survival/physiology , Immunosuppression Therapy/methods , Male , Oxygen Consumption/physiology , Rats , Rats, Inbred Lew
2.
Exp Toxicol Pathol ; 68(10): 543-552, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27591087

ABSTRACT

BACKGROUND: Aberrant glomerular polyanionic charge of glycosaminoglycans (GAGs) and sialic acid expression has been observed in proteinuric human and experimental glomerular diseases. Angiotensin-converting enzyme inhibitors (ACEI) lower proteinuria and amend renal function deterioration via hemodynamic mechanisms. We tested the hypothesis that ACEI modulate proteinuria additionally by modifying glomerular GAGs. METHODS: In this study, we explored the effects of the ACEI enalapril on proteinuria and GAG synthesis in puromycin aminonucleoside (PAN)-treated rats. We employed cationic colloidal gold (CCG) localization in glomerular basement membranes (GBM) to identify GAGs by electron microscopy and determined sialic acid residues by immunohistochemical staining with lectins. To clarify ACEI effects on GAG production in vitro, we studied de novo GAG synthesis into newly synthesized proteoglycans in podocytes and mesangial cells using 35S incorporation. Cells were incubated with or without PAN, and with increasing doses of the ACEI enalaprilat. RESULTS: PAN rats developed severe proteinuria that was significantly improved by enalapril treatment. In non-treated PAN rats GBM GAGs were reduced, whereas in the enalapril-treated group GBM GAGs were significantly increased to control levels. Enalapril did not affect glomerular sialic acid. Furthermore, in cultured podocytes and mesangial cells PAN decreased de novo GAG synthesis, an effect which was significantly ameliorated by enalaprilat treatment. CONCLUSION: Treatment with ACEI improves permselectivity properties of the glomerular capillary wall by maintaining its GAG content. This finding provides an additional new mechanism, whereby ACEI exert anti-proteinuric effects.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Enalapril/pharmacology , Glycosaminoglycans/biosynthesis , Kidney Glomerulus/drug effects , Nephrosis/metabolism , Puromycin Aminonucleoside/toxicity , Animals , Disease Models, Animal , Immunohistochemistry , Kidney Glomerulus/metabolism , Kidney Glomerulus/ultrastructure , Male , Microscopy, Electron, Transmission , Nephrosis/pathology , Podocytes/drug effects , Protein Synthesis Inhibitors/toxicity , Rats , Rats, Wistar
3.
PLoS One ; 8(8): e70150, 2013.
Article in English | MEDLINE | ID: mdl-23936385

ABSTRACT

Developing a device that protects xenogeneic islets to allow treatment and potentially cure of diabetes in large mammals has been a major challenge in the past decade. Using xenogeneic islets for transplantation is required in light of donor shortage and the large number of diabetic patients that qualify for islet transplantation. Until now, however, host immunoreactivity against the xenogeneic graft has been a major drawback for the use of porcine islets. Our study demonstrates the applicability of a novel immunoprotective membrane that allows successful xenotransplantation of rat islets in diabetic minipigs without immunosuppressive therapy. Rat pancreatic islets were encapsulated in highly purified alginate and integrated into a plastic macrochamber covered by a poly-membrane for subcutaneous transplantation. Diabetic Sinclair pigs were transplanted and followed for up to 90 days. We demonstrated a persistent graft function and restoration of normoglycemia without the need for immunosuppressive therapy. This concept could potentially offer an attractive strategy for a more widespread islet replacement therapy that would restore endogenous insulin secretion in diabetic patients without the need for immunosuppressive drugs and may even open up an avenue for safe utilization of xenogeneic islet donors.


Subject(s)
Islets of Langerhans Transplantation/immunology , Islets of Langerhans Transplantation/instrumentation , Islets of Langerhans/immunology , Islets of Langerhans/surgery , Membranes, Artificial , Swine, Miniature , Transplantation, Heterologous/instrumentation , Animals , Biomass , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/surgery , Diffusion , Islets of Langerhans/metabolism , Islets of Langerhans/physiopathology , Male , Oxygen/metabolism , Rats , Swine , Time Factors
4.
Cell Transplant ; 22(8): 1463-76, 2013.
Article in English | MEDLINE | ID: mdl-23043896

ABSTRACT

The current epidemic of diabetes with its overwhelming burden on our healthcare system requires better therapeutic strategies. Here we present a promising novel approach for a curative strategy that may be accessible for all insulin-dependent diabetes patients. We designed a subcutaneous implantable bioartificial pancreas (BAP)-the "ß-Air"-that is able to overcome critical challenges in current clinical islet transplantation protocols: adequate oxygen supply to the graft and protection of donor islets against the host immune system. The system consists of islets of Langerhans immobilized in an alginate hydrogel, a gas chamber, a gas permeable membrane, an external membrane, and a mechanical support. The minimally invasive implantable device, refueled with oxygen via subdermally implanted access ports, completely normalized diabetic indicators of glycemic control (blood glucose intravenous glucose tolerance test and HbA1c) in streptozotocin-induced diabetic rats for periods up to 6 months. The functionality of the device was dependent on oxygen supply to the device as the grafts failed when oxygen supply was ceased. In addition, we showed that the device is immuno-protective as it allowed for survival of not only isografts but also of allografts. Histological examination of the explanted devices demonstrated morphologically and functionally intact islets; the surrounding tissue was without signs of inflammation and showed visual evidence of vasculature at the site of implantation. Further increase in islets loading density will justify the translation of the system to clinical trials, opening up the potential for a novel approach in diabetes therapy.


Subject(s)
Islets of Langerhans/drug effects , Oxygen/pharmacology , Pancreas, Artificial , Tissue Survival/drug effects , Allografts/drug effects , Animals , Blood Glucose/metabolism , Fibrosis/pathology , Glucose Tolerance Test , Glycated Hemoglobin/metabolism , Implants, Experimental , Insulin/metabolism , Male , Materials Testing , Prosthesis Implantation , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Subcutaneous Tissue/drug effects , Transplantation, Homologous
5.
Anal Biochem ; 302(2): 230-8, 2002 Mar 15.
Article in English | MEDLINE | ID: mdl-11878802

ABSTRACT

Protein modification and peptide analysis are important techniques for the elucidation of the structure and function of enzymes. We describe a new technique for the identification of peptides covalently modified with the maleimide cross-linker o-phenylenebismaleimide (OPBM). The method can identify labeled peptides without the use of sophisticated instrumentation or radioactive markers and takes advantage of the separating power of RPLC and of the sensitivity of immunoblotting. Chloroplast ATPase F1 was labeled at a single cysteine residue by OPBM and trypsinized. Fractions collected by RPLC were bound to polyvinylidene fluoride (PVDF). Despite the small size of the OPBM-labeled peptide (1.84 kDa) it was possible to immobilize it on PVDF by using glutaraldehyde to conjugate the peptide to a larger, unlabeled protein. Polyclonal antibodies raised against the cross-linker N,N',1,5-naphthalenebismaleimide (NBM) cross-react with OPBM. These antibodies detected the presence of OPBM displayed on the PVDF and correctly identified the RPLC fraction containing the OPBM-labeled peptide as verified by both mass spectroscopy and radiolabeling of OPBM. This method could be adapted to detect the presence of linear epitopes recognized by an antibody and is a broadly applicable technique for the immunodetection of peptides.


Subject(s)
Chloroplast Proton-Translocating ATPases/metabolism , Glutaral/chemistry , Maleimides/chemistry , Peptides/analysis , Polyvinyls/chemistry , Chromatography, Liquid/methods , Cross-Linking Reagents/chemistry , Immune Sera/immunology , Immunoassay/methods , Maleimides/immunology , Peptides/chemistry , Peptides/metabolism , Proteins/chemistry , Staining and Labeling/methods , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...