Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542168

ABSTRACT

Crocin is a unique water-soluble carotenoid found in crocus and gardenia flowers. Crocin has been shown to have a variety of pharmacological activities, such as antioxidant, anti-cancer, memory improvement, antidepressant, anti-ischemia, blood pressure lowering and aphrodisiac, gene protection and detoxification activities. Due to their amphiphilicity, crocin molecules form concentration-dependent self-associates (micelles) in a water solution. In the present study, using various NMR techniques (T2 relaxation and selective gradient NOESY), we have demonstrated that crocin forms mixed micelles with water-soluble drug delivery system glycyrrhizin and linoleic acid molecules. Note, that the spin-spin T2 relaxation time and NOESY spectroscopy are very sensitive to intermolecular interactions and molecular diffusion mobility. The second purpose of this work was the elucidation of the interaction of crocin with a model lipid membrane using NMR techniques and a molecular dynamics simulation and its effects on lipid oxidation. It was shown that the crocin molecule is located near the surface of the lipid bilayer and effectively protects lipids from oxidation by peroxyl radicals. The role of glycyrrhizin and vitamin C in metal-induced lipid oxidation was also elucidated. The results of this study may be useful for expanding the field of application of crocin in medicine and in the food industry.


Subject(s)
Antioxidants , Crocus , Antioxidants/pharmacology , Antioxidants/chemistry , Micelles , Water , Glycyrrhizic Acid/pharmacology , Carotenoids/pharmacology , Carotenoids/chemistry , Lipids , Crocus/chemistry
2.
Vaccines (Basel) ; 12(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38400127

ABSTRACT

In this study, we characterized recombinant hemagglutinin (HA) of influenza A (H5N8) virus produced in Chinese hamster ovary cells (CHO-K1s). Immunochemical analysis showed that the recombinant hemagglutinin was recognized by the serum of ferrets infected with influenza A (H5N8) virus, indicating that its antigenic properties were retained. Two groups of Balb/c mice were immunized with intramuscular injection of recombinant hemagglutinin or propiolactone inactivated A/Astrakhan/3212/2020 (H5N8) influenza virus. The results demonstrated that both immunogens induced a specific antibody response as determined by ELISA. Virus neutralization assay revealed that sera of immunized animals were able to neutralize A/turkey/Stavropol/320-01/2020 (H5N8) influenza virus-the average neutralizing titer was 2560. Immunization with both recombinant HA/H5 hemagglutinin and inactivated virus gave 100% protection against lethal H5N8 virus challenge. This study shows that recombinant HA (H5N8) protein may be a useful antigen candidate for developing subunit vaccines against influenza A (H5N8) virus with suitable immunogenicity and protective efficacy.

3.
Membranes (Basel) ; 12(3)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35323726

ABSTRACT

The damage of cell membranes induced by photosensitive drugs has attracted the significant attention of researchers in various fields of medicine. Ketoprofen (KP) is known to be the most photosensitive among the nonsteroidal anti-inflammatory drugs. The phototoxic side effects of KP and other non-steroidal anti-inflammatory drugs are associated with the action of free radicals, but there is insufficient information about the nature of these radicals. In the present study, free radicals formed upon KP irradiation within lipid membranes were studied using nuclear magnetic resonance (NMR) and chemically induced dynamic nuclear polarization (CIDNP) methods, as well as a molecular dynamics simulation. Our study confirmed the effective penetration of KP into the lipid bilayer and showed a significant effect of the nature of the medium on the photolysis mechanism. While, in a homogeneous solution, the main channel of KP photolysis is free radical-mediated monomolecular decomposition with formation of radical pairs of benzyl and CO2H● radicals, then, in the lipid membrane, the reaction route shifts towards the bimolecular reaction of KP photoreduction. In addition, the effect of the presence an electron donor (the amino acid tryptophan) on lipid oxidation has been studied. It was found that photoreaction of KP with tryptophan proceeds more efficiently than with lipid molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...