Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 466: 115000, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38631659

ABSTRACT

The brain serotonin (5-HT) system performs a neurotrophic function and supports the plasticity of the nervous system, while its age-related changes can increase the risk of senile neurodegeneration. Zebrafish brain is highly resistant to damage and neurodegeneration due to its high regeneration potential and it is a promising model object in searching for molecular factors preventing age-related neurodegeneration. In the present study alterations in 5-HT-related behavior in the home tank and the novel tank diving test, as well as 5-HT, 5-HIAA levels, tryptophan hydroxylase (TPH), monoamine oxidase (MAO) activity and the expression of genes encoding TPH, MAO, 5-HT transporter and 5-HT receptors in the brain of 6, 12, 24 and 36 month old zebrafish males and females are investigated. Marked sexual dimorphism in the locomotor activity in the novel tank test is revealed: females of all ages move slower than males. No sexual dimorphism in 5-HT-related traits is observed. No changes in 5-HT and 5-HIAA levels in zebrafish brain during aging is observed. At the same time, the aging is accompanied by a decrease in the locomotor activity, TPH activity, tph2 and htr1aa genes expression as well as an increase in the MAO activity and slc6a4a gene expression in their brain. These results indicate that the brain 5-HT system in zebrafish is resistant to age-related alterations.


Subject(s)
Aging , Brain , Hydroxyindoleacetic Acid , Monoamine Oxidase , Serotonin Plasma Membrane Transport Proteins , Serotonin , Sex Characteristics , Tryptophan Hydroxylase , Zebrafish , Animals , Serotonin/metabolism , Male , Female , Aging/metabolism , Aging/physiology , Brain/metabolism , Monoamine Oxidase/metabolism , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Hydroxyindoleacetic Acid/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Motor Activity/physiology , Behavior, Animal/physiology , Receptors, Serotonin/metabolism , Receptors, Serotonin/genetics
2.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36834593

ABSTRACT

The annual turquoise killifish (Nothobranchius furzeri) is a laboratory model organism for neuroscience of aging. In the present study, we investigated for the first time the levels of serotonin and its main metabolite, 5-hydroxyindoleacetic acid, as well as the activities of the key enzymes of its synthesis, tryptophan hydroxylases, and degradation, monoamine oxidase, in the brains of 2-, 4- and 7-month-old male and female N. furzeri. The marked effect of age on the body mass and the level of serotonin, as well as the activities of tryptophan hydroxylases and monoamine oxidase in the brain of killifish were revealed. The level of serotonin decreased in the brain of 7-month-old males and females compared with 2-month-old ones. A significant decrease in the tryptophan hydroxylase activity and an increase in the monoamine oxidase activity in the brain of 7-month-old females compared to 2-month-old females was shown. These findings agree with the age-related alterations in expression of the genes encoding tryptophan hydroxylases and monoamine oxidase. N. furzeri is a suitable model with which to study the fundamental problems of age-related changes of the serotonin system in the brain.


Subject(s)
Cyprinodontiformes , Fundulidae , Animals , Male , Female , Serotonin , Tryptophan , Aging , Brain , Tryptophan Hydroxylase , Monoamine Oxidase
3.
Int J Mol Sci ; 22(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34884655

ABSTRACT

The mechanisms of resistance to antidepressant drugs is a key and still unresolved problem of psychopharmacology. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) play a key role in the therapeutic effect of many antidepressants. Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme in 5-HT synthesis in the brain. We used zebrafish (Danio rerio) as a promising model organism in order to elucidate the effect of TPH2 deficiency caused by p-chlorophenylalanine (pCPA) on the alterations in behavior and expression of 5-HT-related (Tph2, Slc6a4b, Mao, Htr1aa, Htr2aa) and BDNF-related (Creb, Bdnf, Ntrk2a, Ngfra) genes in the brain after prolonged treatment with two antidepressants, inhibitors of 5-HT reuptake (fluoxetine) and oxidation (pargyline). In one experiment, zebrafish were treated for 72 h with 0.2 mg/L fluoxetine, 2 mg/L pCPA, or the drugs combination. In another experiment, zebrafish were treated for 72 h with 0.5 mg/L pargyline, 2 mg/L pCPA, or the drugs combination. Behavior was studied in the novel tank diving test, mRNA levels were assayed by qPCR, 5-HT and its metabolite concentrations were measured by HPLC. The effects of interaction between pCPA and the drugs on zebrafish behavior were observed: pCPA attenuated "surface dwelling" induced by the drugs. Fluoxetine decreased mRNA levels of Tph2 and Htr2aa genes, while pargyline decreased mRNA levels of Slc6a4b and Htr1aa genes. Pargyline reduced Creb, Bdnf and Ntrk2a genes mRNA concentration only in the zebrafish treated with pCPA. The results show that the disruption of the TPH2 function can cause a refractory to antidepressant treatment.


Subject(s)
Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Brain/drug effects , Fluoxetine/pharmacology , Pargyline/pharmacology , Serotonin/metabolism , Tryptophan Hydroxylase/deficiency , Zebrafish Proteins/deficiency , Animals , Antidepressive Agents/pharmacology , Brain/enzymology , Brain/metabolism , Disease Models, Animal , Monoamine Oxidase Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Tryptophan Hydroxylase/metabolism , Zebrafish , Zebrafish Proteins/metabolism
4.
Biomolecules ; 11(10)2021 09 28.
Article in English | MEDLINE | ID: mdl-34680051

ABSTRACT

Short-lived turquoise killifish (Nothobranchius furzeri) have become a popular model organism for neuroscience. In the present paper we study for the first time their behavior in the novel tank diving test and the levels of mRNA of various 5-HT-related genes in brains of 2-, 4- and 6-month-old males and females of N. furzeri. The marked effect of age on body mass, locomotor activity and the mRNA level of Tph1b, Tph2, Slc6a4b, Mao, Htr1aa, Htr2a, Htr3a, Htr3b, Htr4, Htr6 genes in the brains of N. furzeri males was shown. Locomotor activity and expression of the Mao gene increased, while expression of Tph1b, Tph2, Slc6a4b, Htr1aa, Htr2a, Htr3a, Htr3b, Htr4, Htr6 genes decreased in 6-month-old killifish. Significant effects of sex on body mass as well as on mRNA level of Tph1a, Tph1b, Tph2, Slc6a4b, Htr1aa, 5-HT2a, Htr3a, Htr3b, Htr4, and Htr6 genes were revealed: in general both the body mass and the expression of these genes were higher in males. N. furzeri is a suitable model with which to study the fundamental problems of age-related alterations in various mRNA levels related with the brains 5-HT system.


Subject(s)
Aging/genetics , Behavior, Animal/physiology , Fundulidae/genetics , Serotonin/genetics , Aging/physiology , Animals , Brain/metabolism , Female , Fundulidae/physiology , Gene Expression Regulation, Developmental/genetics , Locomotion/genetics , Locomotion/physiology , Male , Monoamine Oxidase/genetics , RNA, Messenger/genetics , Receptor, Serotonin, 5-HT1A/genetics , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Tryptophan Hydroxylase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...