Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35269155

ABSTRACT

Oxyalkylation with propylene carbonate (PC) is a safe process to convert lignin into a reactive liquid polyol to be used in polyurethane formulations. In this study, the effect of operating conditions of oxyalkylation (temperature, time and quantify of PC) on the quality of lignin-based polyol in terms hydroxyl number (IOH) and viscosity was studied. Full factorial modeling and response surface methodology (RSM) were applied to study the effect and interaction of process variables on the IOH and viscosity of lignin-based polyols. The results revealed that the IOH is highly affected by the reaction time, while the viscosity is affected by the amount of PC. Validation experiments confirmed the model is reliable. Furthermore, RSM optimization allowed to reduce the amount of PC by about 50% and to increase the lignin content in the polyol from 12.5% to 25% (w/w) depending on the temperature and time of the process and also on the purpose of the polyol produced (i.e., application in rigid foams or adhesives).

2.
Materials (Basel) ; 14(22)2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34832473

ABSTRACT

The feasibility of using lignosulfonate (LS) from acid sulphite pulping of eucalyptus wood as an unmodified polyol in the formulation of polyurethane (PU) adhesives was evaluated. Purified LS was dissolved in water to simulate its concentration in sulphite spent liquor and then reacted with 4,4'-diphenylmethane diisocyanate (pMDI) in the presence or absence of poly(ethylene glycol) with Mw 200 (PEG200) as soft crosslinking segment. The ensuing LS-based PU adhesives were characterized by infrared spectroscopy and thermal analysis techniques. The adhesion strength of new adhesives was assessed using Automated Bonding Evaluation System (ABES) employing wood strips as a testing material. The results showed that the addition of PEG200 contributed positively both to the homogenization of the reaction mixture and better crosslinking of the polymeric network, as well as to the interface interactions and adhesive strength. The latter was comparable to the adhesive strength recorded for a commercial white glue with shear stress values of almost 3 MPa. The optimized LS-based PU adhesive formulation was examined for the curing kinetics following the Kissinger and the Ozawa methods by non-isothermal differential scanning calorimetry, which revealed the curing activation energy of about 70 kJ·mol-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...