Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Lett ; 362(23): fnv201, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26490946

ABSTRACT

The persistence of traits introduced into the indigenous bacterial community of poplar plants was investigated using bioluminescence mediated by the luc gene. Three endophytic bacterial strains provided with the IncP-1α plasmid RP4-Tn-luc were used to inoculate poplar cuttings at different phenological stages. Screening of isolates by bioluminescence and real-time PCR detection of the luc gene revealed stable persistence for at least 10 weeks. Although the inoculated strains became established with a high population density after inoculation at leaf development (April) and senescence (October), the strains were suppressed by the indigenous bacteria at stem elongation (June). Transconjugants could be detected only at this phenological stage. Indigenous bacteria harbouring RP4-Tn-luc became established with densities ranging from 2 × 10(5) to 9 × 10(6) CFU g(-1) fresh weight 3 and 10 weeks after inoculation. The increased colonization of the cuttings by indigenous bacteria at stem elongation seemed to strongly compete with the introduced strains. Otherwise, the phenological stage of the plants as well as the density of the indigenous recipients could serve as the driver for a more frequent conjugative plasmid transfer. A phylogenetic assignment of transconjugants indicated the transfer of RP4-Tn-luc into six genera of Proteobacteria, mainly Sphingomonas, Stenotrophomonas and Xanthomonas.


Subject(s)
Conjugation, Genetic , Populus/microbiology , Proteobacteria/genetics , DNA, Bacterial , Gene Transfer, Horizontal , Microbial Consortia/genetics , Phylogeny , Plasmids , Proteobacteria/classification , Proteobacteria/isolation & purification , Real-Time Polymerase Chain Reaction
2.
Genome Announc ; 2(2)2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24723717

ABSTRACT

Paenibacillus sp. P22 is a Gram-negative facultative anaerobic endospore-forming bacterium isolated from poplar hybrid 741 (♀[Populus alba × (P. davidiana + P. simonii) × P. tomentosa]). This bacterium shows strong similarities to Paenibacillus humicus, and important growth-promoting effects on in vitro grown explants of poplar hybrid 741 have been described.

3.
Sex Plant Reprod ; 24(3): 189-98, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21107610

ABSTRACT

Hybrid aspen (Populus tremula × P. tremuloides) belong to the section Populus. Eastern cottonwood (P. deltoides) is a member of the section Aigeiros within the genus Populus. These poplar sections are generally considered to be incompatible. Here, we describe successful hybridisation between these parents, producing an offspring family with 27 individuals. The hybrid character of individuals was proven by genotypes at 16 nuclear microsatellite loci. One individual was suspected to have more than the diploid chromosome number of 2n = 38 due to the observation of more than two alleles at several loci. This individual is a triploid, ascertained by flow cytometry. Two distinct growth classes of tall and dwarf plants were observed in the progeny, reflecting different degrees of postzygotic incompatibility. Two loci linked to the tested microsatellites have an effect on height growth. Some fast-growing individuals were micropropagated to test them for biomass performance together with other clones in field trials.


Subject(s)
Hybridization, Genetic , Populus/genetics , Genotype , Ploidies , Populus/growth & development
4.
Mol Plant Microbe Interact ; 22(8): 1032-7, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19589078

ABSTRACT

Metabolic profiling via gas chromatography coupled to mass spectrometry was used to investigate the influence of endophytic bacteria on shoots of in vitro-grown poplar plants free from culturable endophytic bacteria. The results demonstrate that the occurrence of an endophytic Paenibacillus strain strongly affects the composition of the plant metabolites of in vitro-grown poplars. Eleven metabolites were significantly changed between inoculated and non-inoculated poplar plants as determined by two independent experiments. Detected shifts in the primary metabolism of the poplar plants pointed to a mutualistic interaction between bacteria able to fix nitrogen and the host plant with altered nitrogen assimilation patterns. The corresponding metabolic signature comprises increased asparagine and urea levels as well as depleted sugars and organic acids of the tricarboxylic acid cycle. These observations coincide with the fact that the Paenibacillus sp. strain P22 is able to grow without nitrogen in the medium, indicating nitrogen fixation from the air also known from other Paenibacillus spp. In combination with the detected plant-growth-promoting effects of the endophyte Paenibacillus P22, a novel mutualistic interaction is observed.


Subject(s)
Bacteria/metabolism , Populus/microbiology , Bacteria/growth & development , Bacteria/isolation & purification , Gas Chromatography-Mass Spectrometry , Nitrogen Fixation , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/microbiology , Populus/growth & development , Populus/metabolism , Principal Component Analysis , Symbiosis
5.
FEMS Microbiol Ecol ; 63(2): 169-80, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18199082

ABSTRACT

Bacterial endophytes may be important for plant health and other ecologically relevant functions of poplar trees. The composition of endophytic bacteria colonizing the aerial parts of poplar was studied using a multiphasic approach. The terminal restriction fragment length polymorphism analysis of 16S rRNA genes demonstrated the impact of different hybrid poplar clones on the endophytic community structure. Detailed analysis of endophytic bacteria using cultivation methods in combination with cloning of 16S rRNA genes amplified from plant tissue revealed a high phylogenetic diversity of endophytic bacteria with a total of 53 taxa at the genus level that included Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. The community structure displayed clear differences in terms of the presence and relative proportions of bacterial taxa between the four poplar clones studied. The results showed that the genetic background of the hybrid poplar clones corresponded well with the endophytic community structure. Out of the 513 isolates and 209 clones identified, Actinobacteria, in particular the family Microbacteriaceae, made up the largest fraction of the isolates, whereas the clone library was dominated by Alpha- and Betaproteobacteria. The most abundant genera among the isolates were Pseudomonas and Curtobacterium, while Sphingomonas prevailed among the clones.


Subject(s)
Bacteria/isolation & purification , Populus/microbiology , Bacteria/classification , Bacteria/genetics , Base Sequence , Biodiversity , Cloning, Molecular , Colony Count, Microbial , Hybridization, Genetic , Molecular Sequence Data , Phylogeny , Populus/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA
6.
Protein Expr Purif ; 35(1): 17-24, 2004 May.
Article in English | MEDLINE | ID: mdl-15039061

ABSTRACT

10-Deacetylbaccatin III-10-O-acetyltransferase (10-DABT) catalyzes the formation of baccatin III, which is an immediate diterpenoid precursor of Taxol. A cDNA encoding 10-DABT was cloned from Taxus baccata by using RT-PCR and screening a cDNA library. A study of its heterologous overexpression in Escherichia coli was carried out. To get high-level expression of recombinant enzyme, three kinds of IPTG inducible fusion expression systems (with glutathione S-transferase (GST), hexahistidine (6x His), and biotinylated tag) were used, and results of expression were compared. Fusion 10-DABT with different tags was expressed with diverse expression levels and solubility in the three systems. Optimum IPTG concentration, temperature, and inducing time for producing recombinant enzymes were found. Under higher IPTG concentration (up to 1 mM), the highest level of expression for fusion protein was obtained in the 6x His fusion system with phage T5 promoter, but expressed products were only partially soluble. With lower IPTG concentration (less than 0.5 mM), the highest expression was detected in the GST fusion system with tac promoter, and the lowest level of expression appeared in the biotinylated fusion system. The expression level in the latter system did not differ dramatically with a range of different inducer concentrations. GST and 6x His fusion proteins were mainly soluble in aqueous solutions and Triton X-100 improved the solubility of biotinylated fusion proteins (inferring this protein is membrane-associated). Fusion proteins could only be partially purified by a single affinity chromatography step for all three systems. Glutathione-coupled matrix and streptavidin-conjugated resin have higher specificity than Ni-NTA resin, and elution conditions were shown to affect enzyme activity. Three kinds of recombinant 10-DABT with different tags showed enzyme activity, but total enzyme activity was lost as a result of the affinity chromatography step. Thrombin and Factor Xa could be used for site-specific cleavage of fusion proteins, but the incubation temperature affected enzyme activity of recombinant enzymes.


Subject(s)
Acetyltransferases/metabolism , DNA, Complementary/metabolism , Escherichia coli/metabolism , Recombinant Fusion Proteins/metabolism , Taxoids/metabolism , Acetyltransferases/genetics , Acetyltransferases/isolation & purification , Base Sequence , Cell Line , Chromatography, Affinity/methods , Cloning, Molecular , Escherichia coli/genetics , Genetic Vectors/genetics , Genetic Vectors/metabolism , Molecular Sequence Data , Promoter Regions, Genetic , Recombinant Fusion Proteins/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...