Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 12(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35745412

ABSTRACT

Using laser-induced vaporisation to evaporate and ionise a source of curved polyaromatic hydrocarbons (carbon nanobelts), we show collision impacts between species cause mass loss and the resultant ions are catalogued via mass-spectrometry. These data are interpreted via a series of "in-silico"-simulated systematic hydrogen-loss studies using density functional theory modelling, sequentially removing hydrogen atoms using thermodynamic stability as a selection for subsequent dehydrogenation. Initial hydrogen loss results in the formation of carbyne chains and pentagon-chains while the nanobelt rings are maintained, giving rise to new circular strained dehydrobenzoannulene species. The chains subsequently break, releasing CH and C2. Alternative routes towards the formation of closed-cages (fullerenes) are identified but shown to be less stable than chain formation, and are not observed experimentally. The results provide important information on collision degradation routes of curved molecular carbon species, and notably serve as a useful guide to high-energy impact conditions observed in some astrochemical environments.

2.
Phys Chem Chem Phys ; 22(43): 25066-25074, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33119009

ABSTRACT

Two efficient excited state intramolecular proton transfer (ESIPT) dyes based on the hydroxyphenyl-oxazole core and containing one or two triphenylamine donor groups are explored with theoretical tools. These compounds are known to show clear experimental dual emission behaviour, leading to nearly pure white-light emission for one derivative. To probe the excited state properties, we use both Time Dependent Density Functional Theory (TD-DFT) and post Hartree-Fock methods [ADC(2) and CC2] coupled to different solvent models to describe polarisation effects. After validating our theoretical protocol on the two known systems, we design 14 new derivatives with different substitution patterns to quantify the impact of electron accepting and donating groups on the fluorescence spectrum and the ESIPT mechanism. We show that the selected protocol delivers accurate spectroscopic values for the two experimentally-characterised structures, and more importantly, that the relative stabilisation of the keto tautomer depends on the substitution side. Adding donor or acceptor groups to the ESIPT donor moiety favours the formation of the keto form, whereas when placed on the ESIPT accepting side, they tend to preclude ESIPT. Moreover, combining two donor or acceptor substituents generally results in similar ESIPT behaviour as single substitution on one of the two sides: simple additive rules do not apply.

3.
Beilstein J Nanotechnol ; 9: 2750-2762, 2018.
Article in English | MEDLINE | ID: mdl-30416926

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) were functionalized by ferrocene through ethyleneglycol chains of different lengths (FcETGn) and the functionalized SWCNTs (f-SWCNTs) were characterized by different complementary analytical techniques. In particular, high-resolution scanning electron transmission microscopy (HRSTEM) and electron energy loss spectroscopy (EELS) analyses support that the outer tubes of the carbon-nanotube bundles were covalently grafted with FcETGn groups. This result confirms that the electrocatalytic effect observed during the oxidation of the reduced form of nicotinamide adenine dinucleotide (NADH) co-factor by the f-SWCNTs is due to the presence of grafted ferrocene derivatives playing the role of a mediator. This work clearly proves that residual impurities present in our SWCNT sample (below 5 wt. %) play no role in the electrocatalytic oxidation of NADH. Moreover, molecular dynamic simulations confirm the essential role of the PEG linker in the efficiency of the bioelectrochemical device in water, due to the favorable interaction between the ETG units and water molecules that prevents π-stacking of the ferrocene unit on the surface of the CNTs. This system can be applied to biosensing, as exemplified for glucose detection. The well-controlled and well-characterized functionalization of essentially clean SWCNTs enabled us to establish the maximum level of impurity content, below which the f-SWCNT intrinsic electrochemical activity is not jeopardized.

4.
Sci Rep ; 6: 35605, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27748425

ABSTRACT

C60 fullerene crystals may serve as important catalysts for interstellar organic chemistry. To explore this possibility, the electronic structures of free-standing powders of C60 and (C59N)2 azafullerenes are characterized using X-ray microscopy with near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy, closely coupled with density functional theory (DFT) calculations. This is supported with X-ray photoelectron spectroscopy (XPS) measurements and associated core-level shift DFT calculations. We compare the oxygen 1s spectra from oxygen impurities in C60 and C59N, and calculate a range of possible oxidized and hydroxylated structures and associated formation barriers. These results allow us to propose a model for the oxygen present in these samples, notably the importance of water surface adsorption and possible ice formation. Water adsorption on C60 crystal surfaces may prove important for astrobiological studies of interstellar amino acid formation.

5.
Philos Trans A Math Phys Eng Sci ; 374(2076)2016 09 13.
Article in English | MEDLINE | ID: mdl-27501975

ABSTRACT

We calculate the infrared (IR) absorption spectra using DFT B3LYP(6-311G) for a range of small closed-cage fullerenes, Cn, n=20, 24, 26, 28, 30 and 60, in both neutral and multiple positive and negative charge states. The results are of use, notably, for direct comparison with observed IR absorption in the interstellar medium. Frequencies fall typically into two ranges, with C-C stretch modes around 1100-1500 cm(-1) (6.7-9.1 µm) and fullerene-specific radial motion associated with under-coordinated carbon at pentagonal sites in the range 600-800 cm(-1) (12.5-16.7 µm). Notably, negatively charged fullerenes show significantly stronger absorption intensities than neutral species. The results suggest that small cage fullerenes, and notably metallic endofullerenes, may be responsible for many of the unassigned interstellar IR spectral lines.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.

6.
Microsc Microanal ; 22(3): 717-24, 2016 06.
Article in English | MEDLINE | ID: mdl-26899024

ABSTRACT

The electron energy-loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS) database has been completely rewritten, with an improved design, user interface, and a number of new tools. The database is accessible at https://eelsdb.eu/ and can now be used without registration. The submission process has been streamlined to encourage spectrum submissions and the new design gives greater emphasis on contributors' original work by highlighting their papers. With numerous new filters and a powerful search function, it is now simple to explore the database of several hundred EELS and XAS spectra. Interactive plots allow spectra to be overlaid, facilitating online comparison. An application-programming interface has been created, allowing external tools and software to easily access the information held within the database. In addition to the database itself, users can post and manage job adverts and read the latest news and events regarding the EELS and XAS communities. In accordance with the ongoing drive toward open access data increasingly demanded by funding bodies, the database will facilitate open access data sharing of EELS and XAS spectra.

7.
Nano Lett ; 14(10): 5509-16, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25157857

ABSTRACT

Having access to the chemical environment at the atomic level of a dopant in a nanostructure is crucial for the understanding of its properties. We have performed atomically resolved electron energy-loss spectroscopy to detect individual nitrogen dopants in single-walled carbon nanotubes and compared with first-principles calculations. We demonstrate that nitrogen doping occurs as single atoms in different bonding configurations: graphitic-like and pyrrolic-like substitutional nitrogen neighboring local lattice distortion such as Stone-Thrower-Wales defects. We also show that the largest fraction of nitrogen amount is found in poly aromatic species that are adsorbed on the surface of the nanotube walls. The stability under the electron beam of these nanotubes has been studied in two different cases of nitrogen incorporation content and configuration. These findings provide key information for the applications of these nanostructures.

8.
Org Lett ; 16(6): 1594-7, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24597661

ABSTRACT

A new modular approach to the smallest substituted cycloparaphenylenes (CPPs) is presented. This versatile method permits access to substituted CPPs, choosing the substituent at a late stage of the synthesis. Variously substituted [8]CPPs have been synthesized, and their properties analyzed. The structural characteristics of substituted CPPs are close to those of unsubstituted CPPs. However, their optoelectronic behavior differs remarkably due to the larger torsion angle between the phenyl units.

9.
Beilstein J Nanotechnol ; 3: 345-50, 2012.
Article in English | MEDLINE | ID: mdl-23016137

ABSTRACT

We demonstrate that near-edge X-ray-absorption fine-structure spectra combined with full-field transmission X-ray microscopy can be used to study the electronic structure of graphite flakes consisting of a few graphene layers. The flake was produced by exfoliation using sodium cholate and then isolated by means of density-gradient ultracentrifugation. An image sequence around the carbon K-edge, analyzed by using reference spectra for the in-plane and out-of-plane regions of the sample, is used to map and spectrally characterize the flat and folded regions of the flake. Additional spectral features in both π and σ regions are observed, which may be related to the presence of topological defects. Doping by metal impurities that were present in the original exfoliated graphite is indicated by the presence of a pre-edge signal at 284.2 eV.

10.
Phys Rev Lett ; 107(6): 065502, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21902339

ABSTRACT

We demonstrate that free graphene sheet edges can curl back on themselves, reconstructing as nanotubes. This results in lower formation energies than any other nonfunctionalized edge structure reported to date in the literature. We determine the critical tube size and formation barrier and compare with density functional simulations of other edge terminations including a new reconstructed Klein edge. Simulated high resolution electron microscopy images show why such rolled edges may be difficult to detect. Rolled zigzag edges serve as metallic conduction channels, separated from the neighboring bulk graphene by a chain of insulating sp(3)-carbon atoms, and introduce van Hove singularities into the graphene density of states.

11.
Phys Rev Lett ; 96(21): 216103, 2006 Jun 02.
Article in English | MEDLINE | ID: mdl-16803255

ABSTRACT

Calculations of fluorine binding and migration on carbon nanotube surfaces show that fluorine forms varying surface superlattices at increasing temperatures. The ordering transition is controlled by the surface migration barrier for fluorine atoms to pass through next neighbor sites on the nanotube, explaining the transition from semi-ionic low coverage to covalent high coverage fluorination observed experimentally for gas phase fluorination between 200 and 250 degrees C. The effect of solvents on fluorine binding and surface diffusion is explored.

12.
Nat Mater ; 2(5): 333-7, 2003 May.
Article in English | MEDLINE | ID: mdl-12692535

ABSTRACT

We present findings on the structure, energies and behaviour of defects in irradiated graphitic carbon materials. Defect production due to high-energy nuclear radiations experienced in graphite moderators is generally associated with undesirable changes in internal energy, microstructure and physical properties--the so-called Wigner effect. On the flip side, the controlled introduction and ability to handle such defects in the electron beam is considered a desirable way to engineer the properties of carbon nanostructures. In both cases, the atomic-level details of structure and interaction are only just beginning to be understood. Here, using a model system of crystalline graphite, we show from first-principles calculations, new details in the behaviour of vacancy and interstitial defects. We identify a prominent barrier-state to energy release, reveal a surprising ability of vacancy defects to bridge the widely spaced atomic layers, and discuss physical property and microstructure changes during irradiation, including interactions with dislocations.

SELECTION OF CITATIONS
SEARCH DETAIL
...