Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(52): E11248-E11256, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29229831

ABSTRACT

Mutations in 11ß-hydroxysteroid dehydrogenase type 2 gene (HSD11B2) cause an extraordinarily rare autosomal recessive disorder, apparent mineralocorticoid excess (AME). AME is a form of low renin hypertension that is potentially fatal if untreated. Mutations in the HSD11B2 gene result either in severe AME or a milder phenotype (type 2 AME). To date, ∼40 causative mutations have been identified. As part of the International Consortium for Rare Steroid Disorders, we have diagnosed and followed the largest single worldwide cohort of 36 AME patients. Here, we present the genotype and clinical phenotype of these patients, prominently from consanguineous marriages in the Middle East, who display profound hypertension and hypokalemic alkalosis. To correlate mutations with phenotypic severity, we constructed a computational model of the HSD11B2 protein. Having used a similar strategy for the in silico evaluation of 150 mutations of CYP21A2, the disease-causing gene in congenital adrenal hyperplasia, we now provide a full structural explanation for the clinical severity of AME resulting from each known HSD11B2 missense mutation. We find that mutations that allow the formation of an inactive dimer, alter substrate/coenzyme binding, or impair structural stability of HSD11B2 yield severe AME. In contrast, mutations that cause an indirect disruption of substrate binding or mildly alter intramolecular interactions result in type 2 AME. A simple in silico evaluation of novel missense mutations could help predict the often-diverse phenotypes of an extremely rare monogenic disorder.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics , Genotype , Mineralocorticoid Excess Syndrome, Apparent , Mutation, Missense , Protein Multimerization/genetics , Adolescent , Child , Child, Preschool , Computer Simulation , Enzyme Stability , Female , Humans , Infant , Male , Mineralocorticoid Excess Syndrome, Apparent/enzymology , Mineralocorticoid Excess Syndrome, Apparent/genetics , Mineralocorticoid Excess Syndrome, Apparent/pathology
2.
Ann N Y Acad Sci ; 1376(1): 18-28, 2016 07.
Article in English | MEDLINE | ID: mdl-26919042

ABSTRACT

Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain-mediated lysine methylation, one of the major epigenetic marks, has been found to regulate chromatin-mediated gene transcription. Published studies have established further that methylation is not restricted to nuclear proteins but is involved in many cellular processes, including growth, differentiation, immune regulation, and cancer progression. The biological complexity of lysine methylation emerges from its capacity to cause gene activation or gene repression owing to the specific position of methylated-lysine moieties on the chromatin. Accumulating evidence suggests that despite the absence of chromatin, viruses and prokaryotes also express SET proteins, although their functional roles remain relatively less investigated. One possibility could be that SET proteins in lower organisms have more than one biological function, for example, in regulating growth or in manipulating host transcription machinery in order to establish infection. Thus, elucidating the role of an SET protein in host-pathogen interactions requires a thorough understanding of their functions. This review discusses the biological role of lysine methylation in prokaryotes and lower eukaryotes, as well as the underlying structural complexity and functional diversity of SET proteins.


Subject(s)
Host-Pathogen Interactions/genetics , Lysine/metabolism , Prokaryotic Cells/metabolism , Transcription, Genetic , Amino Acid Sequence , Animals , Humans , Methylation , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...