Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(9): e0251895, 2021.
Article in English | MEDLINE | ID: mdl-34520472

ABSTRACT

Obesity and diabetes have strong heritable components, yet the genetic contributions to these diseases remain largely unexplained. In humans, a missense variant in Creb3 regulatory factor (CREBRF) [rs373863828 (p.Arg457Gln); CREBRFR457Q] is strongly associated with increased odds of obesity but decreased odds of diabetes. Although virtually nothing is known about CREBRF's mechanism of action, emerging evidence implicates it in the adaptive transcriptional response to nutritional stress downstream of TORC1. The objectives of this study were to generate a murine model with knockin of the orthologous variant in mice (CREBRFR458Q) and to test the hypothesis that this CREBRF variant promotes obesity and protects against diabetes by regulating energy and glucose homeostasis downstream of TORC1. To test this hypothesis, we performed extensive phenotypic analysis of CREBRFR458Q knockin mice at baseline and in response to acute (fasting/refeeding), chronic (low- and high-fat diet feeding), and extreme (prolonged fasting) nutritional stress as well as with pharmacological TORC1 inhibition, and aging to 52 weeks. The results demonstrate that the murine CREBRFR458Q model of the human CREBRFR457Q variant does not influence energy/glucose homeostasis in response to these interventions, with the exception of possible greater loss of fat relative to lean mass with age. Alternative preclinical models and/or studies in humans will be required to decipher the mechanisms linking this variant to human health and disease.


Subject(s)
DNA-Binding Proteins/genetics , Diet/adverse effects , Glucose/metabolism , Obesity/genetics , Polymorphism, Single Nucleotide , Animals , Body Mass Index , Diet/classification , Disease Models, Animal , Energy Metabolism , Female , Gene Knock-In Techniques , Genetic Predisposition to Disease , Male , Mice , Mutation, Missense , Obesity/metabolism
2.
Endocrinology ; 161(11)2020 11 01.
Article in English | MEDLINE | ID: mdl-32901804

ABSTRACT

Glucocorticoid signaling controls many key biological functions ranging from stress responses to affective states. The putative transcriptional coregulator CREB3 regulatory factor (CREBRF) reduces glucocorticoid receptor levels in vitro, suggesting that CREBRF may impact behavioral and physiological outputs. In the present study, we examined adult male and female mice with global loss of CREBRF (CrebrfKO) for anxiety-like behaviors and circulating glucocorticoids in response to various acute stress conditions. Results demonstrate that both male and female CrebrfKO mice have preserved locomotor activity but reduced anxiety-like behaviors during the light-dark box and elevated plus maze. These behavioral phenotypes were associated with lower plasma corticosterone after restraint stress. Further studies using unhandled female mice also demonstrated a loss of the diurnal circulating corticosterone rhythm in CrebrfKO mice. These results suggest that CREBRF impacts anxiety-like behavior and circulating glucocorticoids in response to acute stressors and serves as a basis for future mechanistic studies to define the impact of CREBRF in glucocorticoid-associated behavioral and physiological responses.


Subject(s)
Anxiety/genetics , DNA-Binding Proteins/genetics , Glucocorticoids/blood , Animals , Anxiety/blood , Behavior, Animal/physiology , Corticosterone/blood , Down-Regulation/genetics , Female , Hypothalamo-Hypophyseal System/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pituitary-Adrenal System/metabolism , Stress, Psychological/blood , Stress, Psychological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...