Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 129(4): 297-304, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15042159

ABSTRACT

Chlorocarbons were ionized through gas phase chemistry at ambient pressure in air and resultant ions were characterized using a micro-fabricated drift tube with differential mobility spectrometry (DMS). Positive and negative product ions were characterized simultaneously in a single drift tube equipped with a 3 mCi (63)Ni ion source at 50 degrees C and drift gas of air with 1 ppm moisture. Scans of compensation voltage for most chlorocarbons produced differential mobility spectra with Cl(-) as the sole product ion and a few chlorocarbons produced adduct ions, M (.-) Cl(-). Detection limits were approximately 20-80 pg for gas chromatography-DMS measurements. Chlorocarbons also yielded positive ions through chemical ionization in air and differential mobility spectra showed peaks with characteristic compensation voltages for each substance. Field dependence of mobility was determined for positive and negative ions of each substance and confirmed characteristic behavior for each ion. A DMS analyzer with a membrane inlet was used to continuously monitor effluent from columns of bentonite or synthetic silica beads to determine breakthrough volumes of individual chlorocarbons. These findings suggest a potential of DMS for monitoring subsurface environments either on site or perhaps in situ.


Subject(s)
Hydrocarbons, Chlorinated/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Mass Spectrometry/instrumentation , Mass Spectrometry/methods
2.
Talanta ; 54(2): 299-306, 2001 Apr 12.
Article in English | MEDLINE | ID: mdl-18968252

ABSTRACT

During the investigation of the degradation products of 2,4,6-trinitrotoluene (TNT) using ion mobility spectrometry (IMS), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (DCP) were found to have IMS responses which overlapped those of the TNT degradation products. It was observed that the Cl(-) reactant ion chemistry, often used for explosives analysis, was not always successful in resolving peak overlap of analytes and interferents. It is shown here that resolution of the analytes and interferences can sometimes be achieved using only air for the formation of reactant ions, at other times through the use of Br(-) as an alternative to Cl(-) for producing reactant ions, and also through the promotion of adduct stability by lowering the IMS temperature.

3.
Talanta ; 54(3): 515-29, 2001 May 10.
Article in English | MEDLINE | ID: mdl-18968275

ABSTRACT

Ion mobility spectrometry has become the most successful and widely used technology for the detection of trace levels of nitro-organic explosives on handbags and carry on-luggage in airports throughout the US. The low detection limits are provided by the efficient ionization process, namely, atmospheric pressure chemical ionization (APCI) reactions in negative polarity. An additional level of confidence in a measurement is imparted by characterization of ions for mobilities in weak electric fields of a drift tube at ambient pressure. Findings from over 30 years of investigations into IMS response to these explosives have been collected and assessed to allow a comprehensive view of the APCI reactions characteristic of nitro-organic explosives. Also, the drift tube conditions needed to obtain particular mobility spectra have been summarized. During the past decade, improvements have occurred in IMS on the understanding of reagent gas chemistries, the influence of temperature on ion stability, and sampling methods. In addition, commercial instruments have been refined to provide fast and reliable measurements for on-site detection of explosives. The gas phase ion chemistry of most explosives is mediated by the fragile CONO(2) bonds or the acidity of protons. Thus, M(-) or M.Cl(-) species are found with only a few explosives and loss of NO(2), NO(3) and proton abstraction reactions are common and complicating pathways. However, once ions are formed, they appear to have stabilities on time scales equal to or longer than ion drift times from 5-20 ms. As such, peak shapes in IMS are suitable for high selectivity and sensitivity.

4.
Talanta ; 55(3): 491-500, 2001 Sep 13.
Article in English | MEDLINE | ID: mdl-18968394

ABSTRACT

The efficiency of chloride reactant ion formation, when chlorinated hydrocarbon reagent chemicals were added to the ionization region of an ion mobility spectrometer, corresponded to the electron attachment rate constant of the chemical. The chemicals investigated here included chloromethane, dichlormethane, trichloromethane, tetrachloromethane and chlorobenzene, with tetrachloromethane producing the greatest amount of chloride reactant ions for the amount of chemical added. Reagent chemicals with smaller electron attachment rate constants required the addition of more chemical to reach functional reactant ion levels. The excess neutral reagent molecules clustered to the chloride reactant ions and reduced the effectiveness of abstracting a proton from 2,4,6-trinitrotoluene (TNT). The effect of clustering was different for each chemical. Tetrachloromethane, which had the least exothermic clustering reaction, had the most effective production of the (TNT-H)(-) product ion per mole of reagent chemical. Bromide and iodide ions were also investigated as potential reactant ions. Bromide was found to effectively produce the proton abstracted (TNT-H)(-) ion. Iodide, however, was not a strong enough base to form (TNT-H)(-) from TNT. There was no apparent transfer of an electron to TNT by chloride, bromide or iodide.

5.
Int J Mass Spectrom Ion Process ; 193(1): 57-68, 1999 Oct 28.
Article in English | MEDLINE | ID: mdl-11543494

ABSTRACT

Gaseous oxygen and nitrogen bases, both singly and as binary mixtures, have been introduced into ion mobility spectrometers to study the appearance of protonated molecules, and proton-bound dimers and trimers. At ambient temperature it was possible to simultaneously observe, following the introduction of molecule A, comparable intensities of peaks ascribable to the reactant ion (H2O)nH+, the protonated molecule AH+ and AH+ H2O, and the symmetrical proton bound dimer A2H+. Mass spectral identification confirmed the identifications and also showed that the majority of the protonated molecules were hydrated and that the proton-bound dimers were hydrated to a much lesser extent. No significant peaks ascribable to proton-bound trimers were obtained no matter how high the sample concentration. Binary mixtures containing molecules A and B, in some cases gave not only the peaks unique to the individual compounds but also peaks due to asymmetrical proton bound dimers AHB+. Such ions were always present in the spectra of mixtures of oxygen bases but were not observed for several mixtures of oxygen and nitrogen bases. The dimers, which were not observable, notable for their low hydrogen bond strengths, must have decomposed in their passage from the ion source to the detector, i.e. in a time less than approximately 5 ms. When the temperature was lowered to -20 degrees C, trimers, both homogeneous and mixed, were observed with mixtures of alcohols. The importance of hydrogen bond energy, and hence operating temperature, in determining the degree of solvation of the ions that will be observed in an ion mobility spectrometer is stressed. The possibility is discussed that a displacement reaction involving ambient water plays a role in the dissociation.


Subject(s)
Gases/analysis , Mass Spectrometry , Nitrogen/chemistry , Oxygen/chemistry , Protons , Air/analysis , Alcohols/analysis , Alcohols/chemistry , Dimerization , Hydrocarbons/analysis , Hydrocarbons/chemistry , Hydrogen Bonding , Ions , Nitrogen/analysis , Oxygen/analysis , Temperature , Thermodynamics
6.
J Am Soc Mass Spectrom ; 5(3): 177-85, 1994 Mar.
Article in English | MEDLINE | ID: mdl-24222547

ABSTRACT

Normal and cyclic alkanes and alkenes form stable gas-phase ions in air at atmospheric pressure from 40 to 200°C when moisture is below 1 ppm. Ionization of alkanes in a (63)Ni source favored charge transfer over proton transfer through pathways involving [M-1](+) and [M-3](+) ions. Ion mobility spectra for alkanes showed sharp and symmetrical profiles while spectra for alkenes suggested fragmentation. Ion identifications were made by using mass spectrometry, and ionization pathways were supported by using deuterated analogs of alkanes and alkenes. Alkanes were ionized seemingly through a hydrogen abstraction pathway and did not proceed through an alkene intermediate. New methods for interpretation of mobility spectra utilizing ion mobility spectrometry, atmospheric pressure chemical ionization mass spectrometry, chemical ionization mass spectrometry, and ion mobility spectrometry-mass spectrometry data were demonstrated.

8.
J Am Soc Mass Spectrom ; 4(6): 507-12, 1993 Jun.
Article in English | MEDLINE | ID: mdl-24235010

ABSTRACT

Collision-induced dissociation (CID) of protonated ammonia-alcohol and water-alcohol heteroclusters was studied using a triple quadrupole mass spectrometer with a corona discharge atmospheric pressure ionization source. CID results suggested that the ammonia-alcohol clusters had NH: at the core of the cluster and that hydrogen-bonded alcohol molecules solvated this central ion. In contrast, CID results in water-alcohol clusters showed that water loss was strongly favored over alcohol loss and that there was a preference for the charge to reside on an alcohol molecule. The results also indicated that a loose chain of hydrogen-bonded molecules was formed in the water-alcohol clusters and that there appeared to be no rigid protonation site or a fixed central ion. (J Am Soc Mass.

SELECTION OF CITATIONS
SEARCH DETAIL
...