Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 123(3): 1077-86, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10889257

ABSTRACT

Arabidopsis Rubisco was activated in vitro at rates 2- to 3-fold greater by recombinant Arabidopsis 43-kD Rubisco activase with the amino acid replacements Q111E and Q111D in a phosphate-binding loop, G-G-K-G-Q-G-K-S. However, these two mutant enzymes had only slightly greater rates of ATP hydrolysis. Activities of the Q111D enzyme were much less sensitive and those of Q111E were somewhat less sensitive to inhibition by ADP. Both mutant enzymes exhibited higher Rubisco activation activities over the physiological range of ADP to ATP ratios. Enzymes with non-polar, polar, and basic residues substituted at position Gln-111 exhibited rates of Rubisco activation less than the wild-type enzyme. Estimates of the relative affinity of the wild type and the Q111D, Q111E, and Q111S enzymes for adenosine nucleotides by a variety of methods revealed that the nucleotide affinities were the most diminished in the Q111D enzyme. The temperature stability of the Q111D and Q111E enzymes did not differ markedly from that of the 43-kD recombinant wild-type enzyme, which is somewhat thermolabile. The Q111D and Q111E enzymes, expressed in planta, may provide a means to better define the role of the ADP to ATP ratio in the regulation of Rubisco activation and photosynthesis rate.


Subject(s)
Adenosine Diphosphate/metabolism , Arabidopsis/enzymology , Plant Proteins/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Adenosine Diphosphate/pharmacology , Adenosine Triphosphatases/metabolism , Amino Acid Substitution , Arabidopsis/genetics , Arabidopsis/metabolism , Enzyme Activation , Enzyme Stability , Fluorescence , Hot Temperature , Mutagenesis, Site-Directed , Plant Proteins/genetics , Polymerase Chain Reaction
2.
Plant Physiol ; 122(2): 583-96, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10677451

ABSTRACT

The dual gradient energy coupling hypothesis posits that chloroplast thylakoid membranes are energized for ATP formation by either a delocalized or a localized proton gradient geometry. Localized energy coupling is characterized by sequestered domains with a buffering capacity of approximately 150 nmol H(+) mg(-1) chlorophyll (Chl). A total of 30 to 40 nmol mg(-1) Chl of the total sequestered domain buffering capacity is contributed by lysines with anomolously low pK(a)s, which can be covalently derivatized with acetic anhydride. We report that in thylakoid membranes treated with acetic anhydride, luminal acidification by a photosystem I (duraquinol [DQH(2)] to methyl viologen [MV]) proton pumping partial reaction was nearly completely inhibited, as measured by three separate assays, yet surprisingly, H(+) accumulation still occurred to the significant level of more than 100 nmol H(+) mg Chl(-1), presumably into the sequestered domains. The treatment did not increase the observed rate constant of dark H(+) efflux, nor was electron transport significantly inhibited. These data provide support for the existence of a sequestered proton translocating pathway linking the redox reaction H(+) ion sources with the CF(0) H(+) channel. The sequestered, low-pK(a) Lys groups appear to have a role in the H(+) diffusion process and chemically modifying them blocks the putative H(+) relay system.


Subject(s)
Thylakoids/metabolism , Acetic Anhydrides/pharmacology , Electron Transport , Hydrogen-Ion Concentration , Light , Protons , Spectrometry, Fluorescence , Thylakoids/drug effects
3.
FEBS Lett ; 336(1): 95-9, 1993 Dec 20.
Article in English | MEDLINE | ID: mdl-8262226

ABSTRACT

Subunit III, the 8 kDa component of the chloroplast CFo H+ channel, was isolated and purified from pea thylakoids for the purpose of studying its Ca(2+)-binding properties. After n-butanol extraction and ether precipitation, HPLC purification was accomplished using a poly(styrene-divinylbenzene) column which removes lipid and protein contaminations. The main components of protein contamination were two hydrophobic proteins of near 4 kDa molecular mass, the psaI and psbK gene products associated with PSI and PSII reaction centers, respectively. Purified subunit III as well as the unfractionated organic-solvent soluble preparation were used in a 45Ca(2+)-ligand blot assay known to detect high affinity Ca(2+)-binding sites in proteins. Polypeptides were separated with SDS-PAGE and were transferred onto PVDF membranes. Treatment of the membrane with 45CaCl2 in the presence of 10-fold excess of MgCl2 and 200-fold excess KCl led to the labeling of only the 8 kDa polypeptide. The Ca2+ binding was inhibited after derivatizing aqueously exposed carboxyl groups with a water soluble carbodiimide plus a nucleophile, after de-formylation of the N-terminal methionine, or with a subsequent treatment with La3+. Ca2+ binding was maximum at pH 7.5-8.5 and was greatly decreased at acidic pH. Dicyclohexylcarbodiimide treatment (no nucleophile was added) of thylakoid membranes, which derivatizes the hydrophobically located Glu-61, decreased the electrophoretical mobility of isolated subunit III but did not inhibit the Ca2+ binding. The data indicate that the carbonyl group of the formylated N-terminal Met-1 and probably the carboxyl group of the subunit III C-terminal Val-81 provide some of seven essential oxygen ligands normally required for defining a Ca(2+)-binding site in proteins. It is probable, but not yet established that an oligomeric form of subunit III polypeptides is essential for forming the Ca(2+)-binding site. Based on the accepted models for the hairpin conformation of the subunit III, it does seem clear that the Ca(2+)-binding site can form on the lumenal side of the membrane in the functional CFo structure.


Subject(s)
Calcium/metabolism , Chloroplasts/enzymology , Proton-Translocating ATPases/metabolism , 1-Butanol , Amino Acid Sequence , Binding Sites , Butanols , Fabaceae , Intracellular Membranes/metabolism , Molecular Sequence Data , Plants, Medicinal , Proton-Translocating ATPases/chemistry
4.
Biochim Biophys Acta ; 1059(1): 16-27, 1991 Aug 02.
Article in English | MEDLINE | ID: mdl-1651763

ABSTRACT

Energy transduction from proton gradients into ATP formation in chloroplast thylakoids has been hypothesized to be driven equally efficiently by localized domain delta mu H+ or by a delocalized delta mu H+ (Beard, W. A. and Dilley, R. A. (1988) J. Bioenerg. Biomembr. 20, 129-154). An important question is whether the apparent localized protonmotive force energy coupling mode can be observed only in the dark-to-light transient in the flash excitation protocol commonly used, or whether the localized energy coupling gradient can be maintained under conditions of continuous illumination ATP formation. The assay in the previous work was to use permeable amines, added to thylakoids in the dark, and observe the effect of the amine on the length of the energization lag (number of single-turnover flashes) required to initiate ATP formation in the dark-to-light transition. Amine buffers delayed the ATP onset in high-salt-stored membranes but did not delay the onset with low salt-stored membranes. This work tested whether permeable amines show the different effects in low- or high-salt-stored thylakoids which had attained a steady-state ATP formation rate (in continuous light) for 20-40 s prior to adding the amine. Hydroxyethylmorpholine was the preferred amine for such experiments, a suitable choice inasmuch as it behaves similarly to pyridine in the flash-induced ATP formation onset experiments, but it permeates more rapidly than pyridine and it has a higher pKa, which enhances its buffering effects. With high-salt-stored thylakoids, 0.5 or 1.0 mM hydroxyethylmorpholine added after 40 s of continuous illumination caused a marked, but transient, slowing of the ATP formation rate, but little or no slowing of the rate was observed with low-salt-stored thylakoids (at similar phosphorylation rates for the two thylakoid samples). Those data indicate that in continuous illumination conditions the proton gradient driving ATP formation in thylakoids from the low-salt-stored treatment did not equilibrate with the lumen, but in thylakoids stored in high-salt the delta mu H+ freely equilibrated with the lumen. That suggestion was supported by measurement of the luminal pH under coupling conditions by the [14C]methylamine distribution method using low- or high-salt-stored thylakoids. Further supportive evidence was obtained from measuring the effect of permeable amine buffers on H+ uptake under coupled and basal conditions with both types of thylakoid.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Chloroplasts/physiology , Energy Metabolism , Light , Adenosine Triphosphate/biosynthesis , Buffers , Cell Membrane Permeability/drug effects , Chloroplasts/drug effects , Darkness , Electron Transport , Fabaceae/physiology , Firefly Luciferin/metabolism , Hydrogen-Ion Concentration , Kinetics , Luciferases/metabolism , Methylamines/metabolism , Morpholines/pharmacology , Plants, Medicinal , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...