Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Intensive Care Med Exp ; 9(1): 19, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33825987

ABSTRACT

BACKGROUND: To describe the effect of mechanical ventilation on diaphragm mitochondrial oxygen consumption, ATP production, reactive oxygen species (ROS) generation, and cytochrome c oxidase activity and content, and their relationship to diaphragm strength in an experimental model of sepsis. METHODS: A cecal ligation and puncture (CLP) protocol was performed in 12 rats while 12 controls underwent sham operation. Half of the rats in each group were paralyzed and mechanically ventilated. We performed blood gas analysis and lactic acid assays 6 h after surgery. Afterwards, we measured diaphragm strength and mitochondrial oxygen consumption, ATP and ROS generation, and cytochrome c oxidase activity. We also measured malondialdehyde (MDA) content as an index of lipid peroxidation, and mRNA expression of the proinflammatory interleukin-1ß (IL-1ß) in diaphragms. RESULTS: CLP rats showed severe hypotension, metabolic acidosis, and upregulation of diaphragm IL-1ß mRNA expression. Compared to sham controls, spontaneously breathing CLP rats showed lower diaphragm force and increased susceptibility to fatigue, along with depressed mitochondrial oxygen consumption and ATP production and cytochrome c oxidase activity. These rats also showed increased mitochondrial ROS generation and MDA content. Mechanical ventilation markedly restored mitochondrial oxygen consumption and ATP production in CLP rats; lowered mitochondrial ROS production by the complex 3; and preserved cytochrome c oxidase activity. CONCLUSION: In an experimental model of sepsis, early initiation of mechanical ventilation restores diaphragm mitochondrial function.

2.
Nitric Oxide ; 23(3): 194-8, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20547233

ABSTRACT

An overwhelming nitric oxide (NO) production is a crucial step in the circulatory events as well as in the cellular alterations taking place in septic shock. However, evidences of this role arise from studies assessing the NO production on an intermittent basis precluding any clear evaluation of temporal relationship between NO production and circulatory alterations. We evaluated this relationship by using a NO specific electrode allowing a continuous measurement of NO production. Septic shock was induced by a cecal ligation and puncture (CLP) in a first group of anesthetized rats. After the same CLP, a second group received a selective iNOS inhibitor (L-NIL). Control rats were sham operated or sham operated with L-NIL administration. While NO concentration was measured every 2 min by a NO-sensitive electrode over 7h following CLP, the liver microcirculation was recorded by a laser-Doppler flowmeter. CLP induced a severe septic shock with hypotension occurring at a mean time of 240 min after CLP. At the same time, an increase in liver NO concentration was observed, whereas a decrease in microvascular liver perfusion was noted. In the septic shock group, L-NIL administration induced an increase in arterial pressure whereas the liver NO concentration returned to baseline values. In addition, shock groups experienced an increase in iNOS mRNA. These data showed a close temporal relationship between the increase in liver NO concentration and the microvascular alteration taking place in the early period of septic shock induced by CLP. The iNOS isoform is involved in this NO increase.


Subject(s)
Cecum/surgery , Liver/metabolism , Nitric Oxide/analysis , Punctures , Shock, Septic/physiopathology , Animals , Disease Models, Animal , Electrodes , Ligation , Male , Nitric Oxide/biosynthesis , Peritonitis/physiopathology , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...