Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiome ; 12(1): 3, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172958

ABSTRACT

BACKGROUND: In anoxic coastal and marine sediments, degradation of methylated compounds is the major route to the production of methane, a powerful greenhouse gas. Dimethylsulphide (DMS) is the most abundant biogenic organic sulphur compound in the environment and an abundant methylated compound leading to methane production in anoxic sediments. However, understanding of the microbial diversity driving DMS-dependent methanogenesis is limited, and the metabolic pathways underlying this process in the environment remain unexplored. To address this, we used anoxic incubations, amplicon sequencing, genome-centric metagenomics and metatranscriptomics of brackish sediments collected along the depth profile of the Baltic Sea with varying sulphate concentrations. RESULTS: We identified Methanolobus as the dominant methylotrophic methanogens in all our DMS-amended sediment incubations (61-99%) regardless of their sulphate concentrations. We also showed that the mtt and mta genes (trimethylamine- and methanol-methyltransferases) from Methanolobus were highly expressed when the sediment samples were incubated with DMS. Furthermore, we did not find mtsA and mtsB (methylsulphide-methyltransferases) in metatranscriptomes, metagenomes or in the Methanolobus MAGs, whilst mtsD and mtsF were found 2-3 orders of magnitude lower in selected samples. CONCLUSIONS: Our study demonstrated that the Methanolobus genus is likely the key player in anaerobic DMS degradation in brackish Baltic Sea sediments. This is also the first study analysing the metabolic pathways of anaerobic DMS degradation in the environment and showing that methylotrophic methane production from DMS may not require a substrate-specific methyltransferase as was previously accepted. This highlights the versatility of the key enzymes in methane production in anoxic sediments, which would have significant implications for the global greenhouse gas budget and the methane cycle. Video Abstract.


Subject(s)
Greenhouse Gases , Methane , Methane/metabolism , Methanosarcinaceae/genetics , Methanosarcinaceae/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Geologic Sediments , Sulfates/metabolism
2.
Environ Sci Pollut Res Int ; 22(3): 2328-34, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25185496

ABSTRACT

Cell-specific ammonia oxidation rate (AOR) has been suggested to be an indicator of the performance of nitrification reactors and to be used as an operational parameter previously. However, published AOR values change by orders of magnitude and studies investigating full-scale nitrification reactors are limited. Therefore, this study aimed at quantifying ammonia-oxidizing bacteria (AOB) and estimating their in situ cell-specific AOR in a full-scale activated sludge reactor treating combined domestic and industrial wastewaters. Results showed that cell-specific AOR changed between 5.30 and 9.89 fmol cell(-1) h(-1), although no significant variation in AOB cell numbers were obtained (1.54E + 08 ± 0.22 cell/ml). However, ammonia-removal efficiency varied largely (52-79 %) and was proportional to the cell-specific AOR in the reactor. This suggested that the cell-specific AOR might be the factor affecting the biological ammonia-removal efficiency of nitrification reactors independent of the AOB number. Further investigation is needed to establish an empirical relationship to use cell-specific AOR as a parameter to operate full-scale nitrification systems more effectively.


Subject(s)
Ammonia/metabolism , Betaproteobacteria/metabolism , Bioreactors/microbiology , Nitrosomonas/metabolism , Sewage/microbiology , Bacteria , Nitrification , Oxidation-Reduction
3.
Water Sci Technol ; 55(10): 183-91, 2007.
Article in English | MEDLINE | ID: mdl-17564384

ABSTRACT

In this study, specific methanogenic activity (SMA) test and fluorescence in situ hybridisation (FISH) were respectively used to determine acetoclastic methanogenic capacity, and composition and number of methanogenic and sulphate reducing bacterial (SRB) populations within a full scale anaerobic contact reactor treating a pulp and paper industry effluent. The sludge samples were collected from three different heights along the anaerobic reactor having a difficulty of completely stirring. Performance of the anaerobic reactor in terms of COD removal efficiency varied between 47 and 55% at organic loading rates in a range of 1.6-1.8 kg COD m(-3) d(-1) and methane yield varied between 0.18 and 0.20 m3CH4kg CODrem(-1). The anaerobic reactor was not operated for 2 weeks during the monitoring period. According to SMA test results, potential methane production rate was 276 mLCH4 gVSS(-1) d(-1) before the off period of the reactor, however it decreased to 159 mL CH4 gVSS(-1) d(-1) after this period. SMA test and FISH results along the reactor height showed that the acetoclastic methanogenic activity of the sludge samples, the relative abundance of acetoclastic methanogens, hydrogenotrophic methanogens and acetate oxidising SRB decreased as the reactor height increased, however the relative abundance of non-acetate oxidising SRB increased.


Subject(s)
Bacteria, Anaerobic/metabolism , Bioreactors , Methane/biosynthesis , Paper , Waste Disposal, Fluid/methods , Bacteria, Anaerobic/physiology , Chromatography, Gas , In Situ Hybridization, Fluorescence/methods , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...