Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Mater ; 39(8): 743, 2023 08.
Article in English | MEDLINE | ID: mdl-37394391

ABSTRACT

OBJECTIVE: To evaluate the prediction accuracy of the Kubelka-Munk Reflectance Theory and other more innovative two-flux and four-flux models for predicting the reflectance and transmittance factors of two flowable dental resin composites of various thicknesses within clinically acceptable color difference. METHODS: Cylindrical samples of Aura Easy Flow resin composite (Ae1, Ae2, Ae3, Ae4 shades) and Estelite Universal Flow SuperLow resin composite (A1, A2, A3, A3.5, A4, A5 shades) were prepared with thicknesses ranging from 0.3 mm to 1.8 mm. Their reflectance and transmittance factors were measured with a spectrophotometer based on an integrating sphere, and were also predicted by 3 different two-flux models and 2 different four-flux models. The accuracy of reflectance and transmittance factor predictions was assessed using the CIEDE2000 color distance metric and 50:50% acceptability and perceptibility threshold criteria. RESULTS: Eymard's four-flux model is found to be the most accurate for predicting the spectral reflectance and transmittance factors, with 85% (resp. 100%) of all color deviations below the acceptability threshold, and below the perceptibility threshold for 40% (resp. 57%) of the samples with thickness ranging from 0.3 to 1.8 mm in reflectance (resp. transmittance) mode. The Kubelka-Munk Reflectance Theory is found to be the least accurate model for predicting the spectral reflectance and transmittance factors of dental resin of thickness ranging from 0.3 to 1.8 mm. SIGNIFICANCE: Eymard's four-flux model enables to predict the color of slices of dental materials within acceptable color differences. Eymard's four-flux model's optical parameters thus describe light-matter interactions in dental materials more accurately than state of the art Kubelka-Munk Reflectance Theory.


Subject(s)
Composite Resins , Color , Spectrophotometry , Materials Testing
2.
J Med Chem ; 62(21): 9680-9690, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31647875

ABSTRACT

In the search for novel influenza inhibitors we evaluated 7-fluoro-substituted indoles as bioisosteric replacements for the 7-azaindole scaffold of Pimodivir, a PB2 (polymerase basic protein 2) inhibitor currently in clinical development. Specifically, a 5,7-difluoroindole derivative 11a was identified as a potent and metabolically stable influenza inhibitor. 11a demonstrated a favorable oral pharmacokinetic profile and in vivo efficacy in mice. In addition, it was found that 11a was not at risk of metabolism via aldehyde oxidase, an advantage over previously described inhibitors of this class. The crystal structure of 11a bound to influenza A PB2 cap region is disclosed here and deposited to the PDB.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Drug Design , Indoles/chemical synthesis , Indoles/pharmacology , Viral Proteins/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Crystallography, X-Ray , Dogs , Humans , Indoles/chemistry , Indoles/pharmacokinetics , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Madin Darby Canine Kidney Cells , Microbial Sensitivity Tests , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...