Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766019

ABSTRACT

Breast cancer brain metastases (BCBM) are a significant cause of mortality and are incurable. Thus, identifying BCBM targets that reduce morbidity and mortality is critical. BCBM upregulate Stearoyl-CoA Desaturase (SCD), an enzyme that catalyzes the synthesis of monounsaturated fatty acids, suggesting a potential metabolic vulnerability of BCBM. In this study, we tested the effect of a brain-penetrant clinical-stage inhibitor of SCD (SCDi), on breast cancer cells and mouse models of BCBM. Lipidomics, qPCR, and western blot were used to study the in vitro effects of SCDi. Single-cell RNA sequencing was used to explore the effects of SCDi on cancer and immune cells in a BCBM mouse model. Pharmacological inhibition of SCD markedly reshaped the lipidome of breast cancer cells and resulted in endoplasmic reticulum stress, DNA damage, loss of DNA damage repair, and cytotoxicity. Importantly, SCDi alone or combined with a PARP inhibitor prolonged the survival of BCBM-bearing mice. When tested in a syngeneic mouse model of BCBM, scRNAseq revealed that pharmacological inhibition of SCD enhanced antigen presentation by dendritic cells, was associated with a higher interferon signaling, increased the infiltration of cytotoxic T cells, and decreased the proportion of exhausted T cells and regulatory T cells in the tumor microenvironment (TME). Additionally, pharmacological inhibition of SCD decreased engagement of immunosuppressive pathways, including the PD-1:PD-L1/PD-L2 and PVR/TIGIT axes. These findings suggest that SCD inhibition could be an effective strategy to intrinsically reduce tumor growth and reprogram anti-tumor immunity in the brain microenvironment to treat BCBM.

2.
Sci Transl Med ; 15(679): eabq6288, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36652537

ABSTRACT

Deregulated de novo lipid synthesis (DNLS) is a potential druggable vulnerability in glioblastoma (GBM), a highly lethal and incurable cancer. Yet the molecular mechanisms that determine susceptibility to DNLS-targeted therapies remain unknown, and the lack of brain-penetrant inhibitors of DNLS has prevented their clinical evaluation as GBM therapeutics. Here, we report that YTX-7739, a clinical-stage inhibitor of stearoyl CoA desaturase (SCD), triggers lipotoxicity in patient-derived GBM stem-like cells (GSCs) and inhibits fatty acid desaturation in GSCs orthotopically implanted in mice. When administered as a single agent, or in combination with temozolomide (TMZ), YTX-7739 showed therapeutic efficacy in orthotopic GSC mouse models owing to its lipotoxicity and ability to impair DNA damage repair. Leveraging genetic, pharmacological, and physiological manipulation of key signaling nodes in gliomagenesis complemented with shotgun lipidomics, we show that aberrant MEK/ERK signaling and its repression of the energy sensor AMP-activated protein kinase (AMPK) primarily drive therapeutic vulnerability to SCD and other DNLS inhibitors. Conversely, AMPK activation mitigates lipotoxicity and renders GSCs resistant to the loss of DNLS, both in culture and in vivo, by decreasing the saturation state of phospholipids and diverting toxic lipids into lipid droplets. Together, our findings reveal mechanisms of metabolic plasticity in GSCs and provide a framework for the rational integration of DNLS-targeted GBM therapies.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Mice , Glioblastoma/genetics , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/therapeutic use , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Xenograft Model Antitumor Assays , DNA Damage , Lipids , Neoplastic Stem Cells/metabolism
3.
Methods Cell Biol ; 170: 1-19, 2022.
Article in English | MEDLINE | ID: mdl-35811093

ABSTRACT

There is an urgency for identifying effective therapies for glioblastoma (GBM), an incurable and lethal primary malignant brain tumor. Patient-derived xenograft mouse models, in which glioma stem cells, which retain the characteristics of the original tumor, are implanted into the brain of immunocompromised mice, represent a well-suited model for studying GBM. Such models are essential for studies involving the tumor microenvironment and for testing experimental therapeutics for brain tumors. In this chapter, we detail various steps for generating an orthotopic brain tumor model in mice. We provide step-by-step guidance for enrichment and expansion of glioma stem cells for surgical specimens, surgical injection of these cells into the brain of immunocompromised mice, as well as monitoring of tumor growth.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Cell Line, Tumor , Glioblastoma/pathology , Humans , Mice , Neoplastic Stem Cells/pathology , Tumor Microenvironment , Xenograft Model Antitumor Assays
4.
STAR Protoc ; 2(1): 100290, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33532737

ABSTRACT

Effective therapeutics for malignant primary brain tumors, such as glioblastomas (GBMs), are urgently needed. To facilitate and expedite early-phase GBM therapeutic development, we describe a protocol that allows the intranasal delivery of experimental compounds in GBM orthotopic mouse models. Compounds delivered through this route can bypass the blood-brain barrier and thus help validate effective therapeutic targets for GBMs. For complete details on the use and execution of this protocol, please refer to Pinkham et al. (2019).


Subject(s)
Brain Neoplasms , Glioma , Neoplasms, Experimental , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Heterografts , Humans , Mice , Mice, Nude , Nasal Absorption , Neoplasm Transplantation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Xenograft Model Antitumor Assays
5.
Behav Brain Res ; 308: 152-9, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27113682

ABSTRACT

To investigate therapy associated changes in the cerebral representation of movement after stroke, we used functional magnetic resonance imaging (fMRI) during an active and a passive motor task for the affected and unaffected hand before and after a three week comprehensive hand motor training. Twelve patients in the subacute phase from 2 to 9 weeks after mild to moderate motor stroke were recruited. During fMRI, the active task comprised fist clenching, which was precisely controlled for motor performance by visual feedback of force and frequency. The passive task consisted of wrist flexion-extension of 1Hz frequency by means of a pneumatic driven splint. Arm Ability Training (AAT) was conducted one hour per day over 3 weeks in addition to inward rehabilitative therapy. Performance gain was tested using movements trained with AAT, but also with conventional hand motor tests (Nine-Hole-Peg Test, Box-and-Block Test). Rehabilitation therapy and AAT resulted in considerable improvement of performance in trained tasks and other hand motor functions (e.g., Nine-Hole-Peg Test). FMRI activation in the ventral premotor cortex (vPMC) of the lesioned hemisphere increased over time for the active task only for the affected hand. No such change was present for the passive wrist extension task or the active task with the unaffected hand. In addition, only for the post measurement of the active task performed with the affected hand, bilateral vPMC shows a more pronounced activation than in healthy controls. This finding contradicts the simple "near to normal is good recovery" opinion.


Subject(s)
Arm , Brain Mapping , Magnetic Resonance Imaging , Motor Cortex/diagnostic imaging , Stroke Rehabilitation , Stroke/diagnostic imaging , Adult , Aged , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Motor Skills/physiology , Movement/physiology , Oxygen/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...