Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Anim Sci ; 49(6): 628-33, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10638498

ABSTRACT

BACKGROUND AND PURPOSE: Guinea pigs are used as models for study of ventricular tachyarrhythmias (VT); however, the tachyarrhythmia often is transient and does not persist. We developed an open-thorax guinea pig model of sustained ventricular fibrillation (VF). METHODS: Bilateral thoracotomy was performed on eight guinea pigs weighing 865 to 1,464 g, and two sutures were positioned in the right ventricular apex for the purpose of pacing. Two methods were used to induce VF: a 50-Hz burst (normal pacing), and an initial 15 beats at 70% of the R-R interval followed by a 100-Hz burst for 84 beats (rapid pacing). Fifteen attempts at inducing VF were performed by use of each method. Blood pressure was recorded before and after development of VF, which was defined as VT with mean blood pressure consistently <10 mm Hg. A final observation was obtained using the normal pacing method without defibrillation. RESULTS: Use of both methods successfully induced VF. A significant relationship between body weight >1,021 g and ability to sustain and survive VF was detected. CONCLUSION: The guinea pig is a useful rodent model for the study of VF and defibrillation.


Subject(s)
Disease Models, Animal , Guinea Pigs , Ventricular Fibrillation/etiology , Animals , Blood Pressure , Body Weight , Electric Countershock , Electric Stimulation , Electrocardiography , Heart/physiopathology , Heart Ventricles/physiopathology , Heart Ventricles/surgery , Organ Size , Thoracotomy , Ventricular Fibrillation/physiopathology
2.
Lab Anim Sci ; 48(1): 55-60, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9517891

ABSTRACT

Guinea pigs are frequently used as models for ventricular tachyarrhythmias, including polymorphic ventricular tachycardia (VT) and ventricular fibrillation. However, applications of the model for short-term therapies are limited because the arrhythmias are transient, typically lasting <5 sec. Thus, spontaneous termination cannot be easily distinguished from effective short-term therapy in standard models. Results of this study confirmed an improved induction method that consistently extends the arrhythmias to 30 sec or longer. In 10 (400- to 1200-g) male guinea pigs, a pacing electrode was advanced in the esophagus. The anode for pacing was a wire advanced through a 20-gauge needle across the diaphragm toward the ventricular apex. Two 12-mm-diameter electrodes were placed on the skin on opposing aspects of the thorax for T-wave stimulation. The blood pressure in the carotid artery was continuously monitored. Two traditional methods were used to induce VT: 2 sec of a 50-Hz square wave, and a single 200 V/5 ms transthoracic stimulus at the peak of the T-wave after pacing at 80% of the intrinsic R-R interval. A third novel method also was used: a single 200 V/5 ms transthoracic stimulus at the peak of the T-wave after a rapid pacing sequence. The rapid pacing sequence was a 25-stimulus sequence, which accelerated to end with 15 beats at the shortest pacing interval for which all pacing stimuli captured. A tachyarrhythmia was defined as any abnormally rapid surface electrocardiographic waveform lasting at least 2 sec after termination of the initiating stimulus. Between 5 and 23 attempts were made to induce tachyarrhythmias in each animal. In four additional animals (>800 g), the efficacy of an established short-term therapy for tachyarrhythmias was measured, using the proposed rapid pacing model. All arrhythmias induced by use of the three induction methods were polymorphic VT accompanied by complete hemodynamic collapse. In hearts weighing >2.5 g (body mass >800 g), 100% of arrhythmia episodes were sustained for 30 sec or longer when initiated after rapid pacing, as opposed to only 55% sustained by use of other induction methods (P < 0.01). The efficacy results for the established short-term therapy matched those previously reported for 100-kg calves. A brief period of rapid pacing facilitates initiation of consistent, sustained ventricular tachyarrhythmias in large guinea pigs, eliminating spontaneous termination as a confounding factor in the study of short-term therapies.


Subject(s)
Disease Models, Animal , Tachycardia, Ventricular/etiology , Animals , Electric Stimulation , Electrocardiography , Electrodes , Guinea Pigs , Male , Tachycardia, Ventricular/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...