Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 50(5): 2538-45, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26838336

ABSTRACT

Utilization of flue gas for algae cultivation seems to be a promising route because flue gas from fossil-fuel combustion processes contains the high amounts of carbon (CO2) and nitrogen (NO) that are required for algae growth. NO is a poor nitrogen source for algae cultivation because of its low reactivity and solublilty in water and its toxicity for algae at high concentrations. Here, we present a novel strategy to valorize NO from flue gas as feedstock for algae production by combining a photocatalytic gas pretreatment unit with a microalgal photobioreactor. The photocatalytic air pretreatment transforms NO gas into NO2 gas and thereby enhances the absorption of NOx in the cultivation broth. The absorbed NOx will form NO2(-) and NO3(-) that can be used as a nitrogen source by algae. The effect of photocatalytic air pretreatment on the growth and biomass productivity of the algae Thalassiosira weissflogii in a semicontinuous system aerated with a model flue gas (1% CO2 and 50 ppm of NO) is investigated during a long-term experiment. The integrated system makes it possible to produce algae with NO from flue gas as the sole nitrogen source and reduces the NOx content in the exhaust gas by 84%.


Subject(s)
Biotechnology/methods , Fossil Fuels , Microalgae/growth & development , Nitric Oxide/chemistry , Nitrogen , Air , Biomass , Biotechnology/instrumentation , Carbon Dioxide/metabolism , Diatoms/growth & development , Diatoms/metabolism , Gases , Microalgae/metabolism , Nitrates/chemistry , Nitrates/metabolism , Nitrogen/metabolism , Photochemical Processes , Power Plants , Vehicle Emissions
SELECTION OF CITATIONS
SEARCH DETAIL
...