Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Sports Physiol Perform ; 17(8): 1280-1288, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35894923

ABSTRACT

PURPOSE: This study examined the associations among common assessments for measuring strength and power in the lower body of high-performing athletes, including both cross-sectional and longitudinal data. METHODS: A total of 100 participants, including both male (n = 83) and female (n = 17) athletes (21 [4] y, 182 [9] cm, 78 [12] kg), were recruited for the study using a multicenter approach. The participants underwent physical testing 4 times. The first 2 sessions (1 and 2) were separated by ∼1 week, followed by a period of 2 to 6 months, whereas the last 2 sessions (3 and 4) were also separated by ∼1 week. The test protocol consisted of squat jumps, countermovement jumps, jump and reach, 30-m sprint, 1-repetition-maximum squat, sprint cycling, and a leg-press test. RESULTS: There were generally acceptable correlations among all performance measures. Variables from the countermovement jumps and leg-press power correlated strongly with all performance assessments (r = .52-.79), while variables from sprint running and squat-jump power displayed more incoherent correlations (r = .21-.82). For changes over time, the correlations were mostly strong, albeit systematically weaker than for cross-sectional measures. CONCLUSIONS: The associations observed among the performance assessments seem to be consistent for both cross-sectional data and longitudinal change scores. The weaker correlations for change scores are most likely mainly caused by lower between-subjects variations in the change scores than for the cross-sectional data. The present study provides novel information, helping researchers and practitioners to better interpret the relationships across common performance assessment methods.


Subject(s)
Athletic Performance , Muscle Strength , Athletes , Cross-Sectional Studies , Female , Humans , Male , Muscle, Skeletal , Weight Lifting
2.
Int J Sports Physiol Perform ; 17(7): 1103-1110, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35477896

ABSTRACT

PURPOSE: This study examined the test-retest reliability of common assessments for measuring strength and power of the lower body in high-performing athletes. METHODS: A total of 100 participants, including both male (n = 83) and female (n = 17) athletes (21 [4] y, 182 [9] cm, and 78 [12] kg), were recruited for this study, using a multicenter approach. The participants underwent physical testing 4 times. The first 2 sessions (1 and 2) were separated by ∼1 week, followed by a period of 2 to 6 months, whereas the last 2 sessions (3 and 4) were again separated by ∼1 week. The test protocol consisted of squat jumps, countermovement jumps, jump and reach, 30-m sprint, 1-repetition-maximum squat, sprint cycling, and a leg-press test. RESULTS: The typical error (%) ranged from 1.3% to 8.5% for all assessments. The change in means ranged from -1.5% to 2.5% for all assessments, whereas the interclass correlation coefficient ranged from .85 to .97. The smallest worthwhile change (0.2 of baseline SD) ranged from 1.2% to 5.0%. The ratio between the typical error (%) and the smallest worthwhile change (%) ranged from 0.5 to 1.2. When observing the reliability across testing centers, considerable differences in reliability were observed (typical error [%] ratio: 0.44-1.44). CONCLUSIONS: Most of the included assessments can be used with confidence by researchers and coaches to measure strength and power in athletes. Our results highlight the importance of controlling testing reliability at each testing center and not relying on data from others, despite having applied the same protocol.


Subject(s)
Athletic Performance , Running , Athletes , Exercise Test , Female , Humans , Male , Muscle Strength , Muscle, Skeletal , Reproducibility of Results
3.
Int J Sports Physiol Perform ; 16(12): 1777-1785, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34044368

ABSTRACT

PURPOSE: The aim of this study was to examine the concurrent validity of force-velocity (FV) variables assessed across 5 Keiser leg press devices. METHODS: A linear encoder and 2 independent force plates (MuscleLab devices) were mounted on each of the 5 leg press devices. A total of 997 leg press executions, covering a wide range of forces and velocities, were performed by 14 participants (29 [7] y, 181 [5] cm, 82 [8] kg) across the 5 devices. Average and peak force, velocity, and power values were collected simultaneously from the Keiser and MuscleLab devices for each repetition. Individual FV profiles were fitted to each participant from peak and average force and velocity measurements. Theoretical maximal force, velocity, and power were deduced from the FV relationship. RESULTS: Average and peak force and velocity had a coefficient of variation of 1.5% to 8.6%, near-perfect correlations (.994-.999), and a systematic bias of 0.7% to 7.1% when compared with reference measurements. Average and peak power showed larger coefficient of variations (11.6% and 17.2%), despite excellent correlations (.977 and .952), and trivial to small biases (3.9% and 8.4%). Extrapolated FV variables showed near-perfect correlations (.983-.997) with trivial to small biases (1.4%-11.2%) and a coefficient of variation of 1.4% to 5.9%. CONCLUSIONS: The Keiser leg press device can obtain valid measurements over a wide range of forces and velocities across different devices. To accurately measure power, theoretical maximal power calculated from the FV profile is recommended over average and peak power values from single repetitions, due to the lower random error observed for theoretical maximal power.


Subject(s)
Leg , Muscle Strength , Data Collection , Humans , Weight Lifting
SELECTION OF CITATIONS
SEARCH DETAIL
...