Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(12): eadk5979, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517954

ABSTRACT

We present results from high-pressure, high-temperature experiments that generate incipient carbonate melts at mantle conditions (~90 kilometers depth and temperatures between 750° and 1050°C). We show that these primitive carbonate melts can sequester sulfur in its oxidized form of sulfate, as well as base and precious metals from mantle lithologies of peridotite and pyroxenite. It is proposed that these carbonate sulfur-rich melts may be more widespread than previously thought and that they may play a first-order role in the metallogenic enhancement of localized lithospheric domains. They act as effective agents to dissolve, redistribute, and concentrate metals within discrete domains of the mantle and into shallower regions within Earth, where dynamic physicochemical processes can lead to ore genesis at various crustal depths.

2.
Rev Sci Instrum ; 94(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37219388

ABSTRACT

The accurate and precise determination of the compositions of silicate glasses formed from melts containing volatile components H2O and CO2 recovered from high-pressure, high-temperature experiments is essential to our understanding of geodynamic processes taking place within the planet. Silicate melts are often difficult to analyze chemically because the formation of quench crystals and overgrowths on silicate phases is rapid and widespread upon quenching of experiments, preventing the formation of glasses in low-SiO2 and volatile-rich compositions. Here, we present experiments conducted in a novel rapid quench piston cylinder apparatus on a series of partially molten low-silica alkaline rock compositions (lamproite, basanite, and calk-alkaline basalt) with a range of water contents between 3.5 and 10 wt %. Quench modification of the volatile-bearing silicate glasses is significantly reduced compared to those produced in older piston cylinder apparatuses. The recovered glasses are almost completely free of quench modification and facilitate the determination of precise chemical compositions. We illustrate significantly improved quench textures and provide an analytical protocol that recovers accurate chemical compositions from both poorly quenched and well-quenched silicate glasses.

SELECTION OF CITATIONS
SEARCH DETAIL
...