Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Nephrol ; 2014: 512178, 2014.
Article in English | MEDLINE | ID: mdl-25431671

ABSTRACT

Background/Aims. Uremic solutes, which are known to be retained in patients with chronic kidney disease, are considered to have deleterious effects on disease progression. Among these uremic solutes, indoxyl sulfate (IS) has been extensively studied, while other solutes have been studied less to state. We conducted a comparative study to examine the similarities and differences between IS, p-cresyl sulfate (PCS), phenyl sulfate (PhS), hippuric acid (HA), and indoleacetic acid (IAA). Methods. We used LLC-PK1 cells to evaluate the effects of these solutes on viable cell number, cell cycle progression, and cell death. Results. All the solutes reduced viable cell number after 48-hour incubation. N-Acetyl-L-cysteine inhibited this effect induced by all solutes except HA. At the concentration that reduced the cell number to almost 50% of vehicle control, IAA induced apoptosis but not cell cycle delay, whereas other solutes induced delay in cell cycle progression with marginal impact on apoptosis. Phosphorylation of p53 and Chk1 and expression of ATF4 and CHOP genes were detected in IS-, PCS-, and PhS-treated cells, but not in IAA-treated cells. Conclusions. Taken together, the adverse effects of PCS and PhS on renal tubular cells are similar to those of IS, while those of HA and IAA differ.

2.
Mass Spectrom (Tokyo) ; 2(Spec Iss): S0017, 2013.
Article in English | MEDLINE | ID: mdl-24349936

ABSTRACT

Uremic toxins are involved in a variety of symptoms in advanced chronic kidney disease. Especially, the accumulation of protein-bound uremic toxins in the blood of dialysis patients might play an important role in the development of cardiovascular disease. Serum concentration of protein-bound uremic toxins such as indoxyl sulfate, indoxyl glucuronide, indoleacetic acid, p-cresyl sulfate, p-cresyl glucuronide, phenyl sulfate, phenyl glucuronide, phenylacetic acid, phenylacetylglutamine, hippuric acid, 4-ethylphenyl sulfate, and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF) in hemodialysis patients were simultaneously measured by liquid chromatography/tandem mass spectrometry. Serum levels of these protein-bound uremic toxins were increased in hemodialysis patients. Indoxyl sulfate, p-cresyl sulfate, and CMPF could not be removed efficiently by hemodialysis due to their high protein-binding ratios. Serum level of total indoxyl sulfate did not show any significant correlation with total p-cresyl sulfate. However, free indoxyl sulfate correlated with free p-cresyl sulfate, and reduction rate by hemodialysis of indoxyl sulfate correlated with that of p-cresyl sulfate. Serum levels of total and free indoxyl sulfate showed significantly positive correlation with those of indoxyl glucuronide, phenyl sulfate, and phenyl glucuronide. Serum levels of total and free p-cresyl sulfate showed significantly positive correlation with those of p-cresyl glucuronide, phenylacetylglutamine, and phenylacetic acid. Indoxyl sulfate and indoxyl glucuronide are produced from indole which is produced in the intestine from tryptophan by intestinal bacteria. p-Cresyl sulfate and p-cresyl glucuronide are produced from p-cresol which is produced in the intestine from tyrosine by intestinal bacteria. Thus, intestinal bacteria play an important role in the metabolism of protein-bound uremic toxins.

3.
Anal Bioanal Chem ; 403(7): 1841-50, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22447217

ABSTRACT

Cardiovascular disease (CVD) is prevalent in patients with chronic kidney disease (CKD). In hemodialysis (HD) patients, some protein-bound uremic toxins are considered to be associated with CVD. However, it is not yet known which uremic toxins are important in terms of endothelial toxicity. Serum samples were obtained from 45 HD patients before and after HD. Total and free serum concentrations of indoxyl sulfate, indoxyl glucuronide, indoleacetic acid, p-cresyl sulfate, p-cresyl glucuronide, phenyl sulfate, phenyl glucuronide, phenylacetic acid, phenylacetyl glutamine, hippuric acid, 4-ethylphenyl sulfate, and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF) were simultaneously measured by liquid chromatography/electrospray ionization-mass spectrometry/mass spectrometry (LC/ESI-MS/MS). The effects of these solutes at their pre-HD mean and maximum serum concentrations on reactive oxygen species (ROS) production in human umbilical vein endothelial cells (HUVEC) were measured with a ROS probe. Serum levels of 11 of the solutes (all except 4-ethylphenyl sulfate) were significantly increased in HD patients compared to healthy subjects. All 12 solutes showed changes in their protein-binding ratios. In particular, indoxyl sulfate, p-cresyl sulfate, CMPF, and 4-ethylphenyl sulfate showed high protein-binding ratios (>95 %) and low reduction rates by HD (<35 %). Indoxyl sulfate at its mean and maximum pre-HD serum concentrations-even with 4 % albumin-stimulated ROS production in HUVEC most intensely, followed by CMPF. In conclusion, the serum levels of 11 protein-bound uremic toxins were increased in HD patients. Indoxyl sulfate, p-cresyl sulfate, and CMPF could not be removed efficiently by HD due to their high protein-binding ratios. Indoxyl sulfate most intensely induced endothelial ROS production, followed by CMPF.


Subject(s)
Chromatography, Liquid/methods , Endothelium, Vascular/metabolism , Proteins/metabolism , Reactive Oxygen Species/metabolism , Renal Dialysis , Tandem Mass Spectrometry/methods , Toxins, Biological/blood , Uremia/metabolism , Aged , Cells, Cultured , Female , Humans , Male , Middle Aged
4.
J Chromatogr B Analyt Technol Biomed Life Sci ; 878(29): 2997-3002, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20870466

ABSTRACT

An oral sorbent AST-120 composed of spherical porous carbon particles has superior adsorption ability for certain small-molecular-weight organic compounds known to accumulate in patients with chronic renal failure (CRF). A metabolomic approach was applied to search for uremic toxins as possible indicators of the effect of AST-120. Serum metabolites in normal and CRF rats before and after administration of AST-120 for 3 days were analyzed by liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) and principal component analysis. Further, serum and urine levels of the indicators were quantified by selected reaction monitoring of LC/ESI-MS/MS. Indoxyl sulfate was the first principal serum metabolite, which could differentiate CRF from both normal and AST-120-administered CRF rats, followed by hippuric acid, phenyl sulfate and 4-ethylphenyl sulfate. CRF rats showed increased serum levels of indoxyl sulfate, hippuric acid, phenyl sulfate, 4-ethylphenyl sulfate and p-cresyl sulfate. Administration of AST-120 for 3 days to the CRF rats reduced the serum and urine levels of these metabolites. In conclusion, indoxyl sulfate is the best indicator of the effect of AST-120 in CRF rats. Hippuric acid, phenyl sulfate and 4-ethylphenyl sulfate are suggested as the additional indicators. 4-Ethylphenyl sulfate is a newly identified uremic substance.


Subject(s)
Carbon/administration & dosage , Chromatography, Liquid/methods , Kidney Failure, Chronic/therapy , Oxides/administration & dosage , Tandem Mass Spectrometry/methods , Toxins, Biological/blood , Toxins, Biological/urine , Uremia/therapy , Adsorption , Animals , Carbon/chemistry , Hippurates/blood , Hippurates/metabolism , Hippurates/urine , Indican/blood , Indican/metabolism , Indican/urine , Kidney Failure, Chronic/blood , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/urine , Male , Metabolomics , Oxides/chemistry , Rats , Rats, Sprague-Dawley , Toxins, Biological/metabolism , Uremia/blood , Uremia/metabolism , Uremia/urine
5.
J Chromatogr B Analyt Technol Biomed Life Sci ; 878(20): 1662-8, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20036201

ABSTRACT

We applied the metabolomic analysis of comprehensive small-molecular metabolites using liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) and principal component analysis to identify uremic toxins accumulated in the serum of chronic renal failure (CRF) rats. CRF rats were produced by 5/6-nephrectomy. Indoxyl sulfate was demonstrated to be the first principal serum metabolite which differentiates CRF from normal, followed by phenyl sulfate, hippuric acid and p-cresyl sulfate. Then, we measured the serum levels of indoxyl sulfate, phenyl sulfate, hippuric acid and p-cresyl sulfate by the selected reaction monitoring (SRM) of LC/ESI-MS/MS, and demonstrated that these serum levels were markedly increased in CRF rats as compared with normal rats. As creatinine clearance decreased, the serum levels of the metabolites increased.


Subject(s)
Chromatography, Liquid/methods , Kidney Failure, Chronic/blood , Metabolomics/methods , Spectrometry, Mass, Electrospray Ionization/methods , Toxins, Biological/blood , Animals , Cresols/blood , Disease Models, Animal , Hippurates/blood , Humans , Indican/blood , Kidney/chemistry , Kidney Failure, Chronic/urine , Male , Rats , Rats, Sprague-Dawley , Sulfuric Acid Esters/blood , Toxins, Biological/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...