Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Arch Environ Contam Toxicol ; 82(4): 520-538, 2022 May.
Article in English | MEDLINE | ID: mdl-35441861

ABSTRACT

The effects of multigenerational Cu exposure on the freshwater gastropod Isidorella newcombi were investigated. Snails were exposed to a range of treatment-specific Cu concentrations in the parental to F2 generations, and a common Cu concentration in the F3 generation. In the parental to F2 generations, some general responses to 3 days Cu exposures included reduced survival and feeding in snails exposed to higher Cu concentrations. This suggested that the snails exposed to the high Cu concentration were experiencing Cu-induced stress that may apply selection pressure. In the F3 generation, when all treatments were exposed to a common Cu concentration, increased survival was correlated with the pre-exposure Cu concentration history. Snails that had been pre-exposed to Cu also displayed reduced stress at a sub-lethal level, indicated by lower lysosomal destabilisation (LD). Mortality and LD responses in the F3 generation were not related to Cu tissue concentrations, indicating increased tolerance and reduced stress were not related to changes in Cu bioaccumulation. Total antioxidant capacity increased in the higher Cu concentration pre-exposure treatments which could be associated with lower Cu-induced stress, however, this is not supported by the oxidative damage marker lipid peroxidation, which also increased. While Cu tissue concentrations and oxidative stress markers were assessed to determine underlying reasons for increased tolerance in snails from a population with a multi-generational exposure history to Cu, the results were not conclusive. Despite this, it was demonstrated through increased survival and reduced LD that Cu tolerance can develop over a short evolutionary time scale.


Subject(s)
Copper , Water Pollutants, Chemical , Animals , Biomarkers , Copper/analysis , Copper/toxicity , Fresh Water , Oxidative Stress , Snails , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Arch Environ Contam Toxicol ; 79(4): 391-405, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33090264

ABSTRACT

The native freshwater gastropod Isidorella newcombi attacks the roots of developing rice plants in southern Australia and is controlled using copper sulphate. The apparent tolerance of this species to moderate levels of copper (Cu) exposure led us to investigate its potential usefulness as a biomonitor species. To assess its response to chronic Cu exposure, adult I. newcombi were exposed to 0-120 µg L-1 of Cu for 28 days. Lethal and sublethal responses were investigated. The relationships between subcellular biomarkers and life history traits also were explored. At exposure concentrations of 60 µg L-1 Cu and above, 100% mortality was observed during the 28-day exposure period. In these treatments, there was an exposure concentration dependent decrease in the time that the snails survived. In the surviving snails, there was an exposure concentration-dependent increase in tissue Cu concentration. In the snails exposed to Cu concentrations above 15 µg L-1, no eggs were produced during the final week of copper exposure, indicating that populations would not persist at Cu concentrations above 15 µg L-1. The general stress biomarker lysosomal membrane destabilisation (LD) indicated organisms exposed to 10 µg L-1 Cu and above were experiencing Cu induced stress. This suggests that LD could act as an early warning system for responses at higher levels of biological organisation in I. newcombi exposed to copper.


Subject(s)
Copper/toxicity , Snails/physiology , Water Pollutants, Chemical/toxicity , Animals , Biomarkers , Copper/analysis , Copper Sulfate , Fresh Water , Reproduction , Toxicity Tests, Chronic , Water Pollutants, Chemical/analysis
3.
Heredity (Edinb) ; 118(3): 276-283, 2017 03.
Article in English | MEDLINE | ID: mdl-28000659

ABSTRACT

The main objectives of this study were to test: (1) whether the W-chromosome differentiation matches to species' evolutionary divergence (phylogenetic concordance) and (2) whether sex chromosomes share a common ancestor within a congeneric group. The monophyletic genus Triportheus (Characiformes, Triportheidae) was the model group for this study. All species in this genus so far analyzed have ZW sex chromosome system, where the Z is always the largest chromosome of the karyotype, whereas the W chromosome is highly variable ranging from almost homomorphic to highly heteromorphic. We applied conventional and molecular cytogenetic approaches including C-banding, ribosomal DNA mapping, comparative genomic hybridization (CGH) and cross-species whole chromosome painting (WCP) to test our questions. We developed Z- and W-chromosome paints from T. auritus for cross-species WCP and performed CGH in a representative species (T. signatus) to decipher level of homologies and rates of differentiation of W chromosomes. Our study revealed that the ZW sex chromosome system had a common origin, showing highly conserved Z chromosomes and remarkably divergent W chromosomes. Notably, the W chromosomes have evolved to different shapes and sequence contents within ~15-25 Myr of divergence time. Such differentiation highlights a dynamic process of W-chromosome evolution within congeneric species of Triportheus.


Subject(s)
Biological Evolution , Characidae/genetics , Sex Chromosomes , Animals , Chromosome Mapping , Chromosome Painting , Comparative Genomic Hybridization , DNA, Ribosomal/genetics , Female , Heterochromatin/genetics , Male , Phylogeny , Species Specificity
4.
J Evol Biol ; 26(12): 2544-57, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24118347

ABSTRACT

Evolutionary transitions between sex-determining mechanisms (SDMs) are an enigma. Among vertebrates, individual sex (male or female) is primarily determined by either genes (genotypic sex determination, GSD) or embryonic incubation temperature (temperature-dependent sex determination, TSD), and these mechanisms have undergone repeated evolutionary transitions. Despite this evolutionary lability, transitions from GSD (i.e. from male heterogamety, XX/XY, or female heterogamety, ZZ/ZW) to TSD are an evolutionary conundrum, as they appear to require crossing a fitness valley arising from the production of genotypes with reduced viability owing to being homogametic for degenerated sex chromosomes (YY or WW individuals). Moreover, it is unclear whether alternative (e.g. mixed) forms of sex determination can persist across evolutionary time. It has previously been suggested that transitions would be easy if temperature-dependent sex reversal (e.g. XX male or XY female) was asymmetrical, occurring only in the homogametic sex. However, only recently has a mechanistic model of sex determination emerged that may allow such asymmetrical sex reversal. We demonstrate that selection for TSD in a realistic sex-determining system can readily drive evolutionary transitions from GSD to TSD that do not require the production of YY or WW individuals. In XX/XY systems, sex reversal (female to male) occurs in a portion of the XX individuals only, leading to the loss of the Y allele (or chromosome) from the population as XX individuals mate with each other. The outcome is a population of XX individuals whose sex is determined by incubation temperature (TSD). Moreover, our model reveals a novel evolutionarily stable state representing a mixed-mechanism system that has not been revealed by previous approaches. This study solves two long-standing puzzles of the evolution of sex-determining mechanisms by illuminating the evolutionary pathways and endpoints.


Subject(s)
Evolution, Molecular , Sex Determination Processes , Animals , Female , Male , Models, Genetic , Selection, Genetic , Temperature
5.
Chromosome Res ; 21(4): 361-74, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23703235

ABSTRACT

Reptiles, as the sister group to birds and mammals, are particularly valuable for comparative genomic studies among amniotes. The Australian central bearded dragon (Pogona vitticeps) is being developed as a reptilian model for such comparisons, with whole-genome sequencing near completion. The karyotype consists of 6 pairs of macrochromosomes and 10 pairs microchromosomes (2n = 32), including a female heterogametic ZW sex microchromosome pair. Here, we present a molecular cytogenetic map for P. vitticeps comprising 87 anchor bacterial artificial chromosome clones that together span each macro- and microchromosome. It is the first comprehensive cytogenetic map for any non-avian reptile. We identified an active nucleolus organizer region (NOR) on the sub-telomeric region of 2q by mapping 18S rDNA and Ag-NOR staining. We identified interstitial telomeric sequences in two microchromosome pairs and the W chromosome, indicating that microchromosome fusion has been a mechanism of karyotypic evolution in Australian agamids within the last 21 to 19 million years. Orthology searches against the chicken genome revealed an intrachromosomal rearrangement of P. vitticeps 1q, identified regions orthologous to chicken Z on P. vitticeps 2q, snake Z on P. vitticeps 6q and the autosomal microchromosome pair in P. vitticeps orthologous to turtle Pelodiscus sinensis ZW and lizard Anolis carolinensis XY. This cytogenetic map will be a valuable reference tool for future gene mapping studies and will provide the framework for the work currently underway to physically anchor genome sequences to chromosomes for this model Australian squamate.


Subject(s)
Chromosome Mapping , Cytogenetics/methods , Lizards/genetics , Animals , Chickens/genetics , Cloning, Molecular , Evolution, Molecular , Female , In Situ Hybridization, Fluorescence , Karyotype , Karyotyping/methods , Male , Sex Chromosomes , Snakes/genetics , Turtles/genetics
6.
Sex Dev ; 4(1-2): 7-15, 2010.
Article in English | MEDLINE | ID: mdl-20110654

ABSTRACT

Vertebrates show an astonishing array of sex determining mechanisms, including male and female heterogamety, multiple sex chromosome systems, environmental sex determination, parthenogenesis and hermaphroditism. Sex determination in mammals and birds is extraordinarily conservative compared to that of reptiles, amphibians and fish. In this paper, we explore possible explanations for the diversity of sex determining modes in reptiles, and in particular, address the prevalence of reptilian temperature-dependent sex determination (TSD) and its almost haphazard distribution across the reptile phylogeny. We suggest that reptiles are predisposed to evolving TSD from genotypic sex determination (GSD) by virtue of the uniquely variable thermal environment experienced by their embryos during the critical period in which sex is determined. Explicit mechanisms for canalization of sexual phenotype in the face of high thermal variation during development provide a context for thermolability in sex determination at extremes and the raw material for natural selection to move this thermolability into the developmental mainstream when there is a selective advantage to do so. Release of cryptic variation when canalization is challenged and fails at extremes may accelerate evolutionary transitions between GSD and TSD.


Subject(s)
Body Temperature/physiology , Reptiles/physiology , Sex Determination Processes , Animals , Female , Male , Phenotype , Reptiles/genetics , Sex Differentiation
7.
Heredity (Edinb) ; 104(4): 410-7, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19812616

ABSTRACT

Distribution of temperature-dependent sex determination (TSD) and genotypic sex determination (GSD) across the phylogeny of dragon lizards implies multiple independent origins of at least one, and probably both, modes of sex determination. Female Pogona vitticeps are the heterogametic sex, but ZZ individuals reverse to a female phenotype at high incubation temperatures. We used reiterated genome walking to extend Z and W chromosome-linked amplified fragment length polymorphism (AFLP) markers, and fluorescence in situ hybridization for physical mapping. One extended fragment hybridized to both W and Z microchromosomes, identifying the Z microchromosome for the first time, and a second hybridized to the centromere of all microchromosomes. W-linked sequences were converted to a single-locus PCR sexing assay. P. vitticeps sex chromosome sequences also shared homology with several other Australian dragons. Further physical mapping and isolation of sex-specific bacterial artificial chromosome clones will provide insight into the evolution of sex determination and sex chromosomes in GSD and TSD dragon lizards.


Subject(s)
Amplified Fragment Length Polymorphism Analysis , Lizards/genetics , Physical Chromosome Mapping , Sex Chromosomes/genetics , Animals , Base Sequence , Chromosome Structures/genetics , Crosses, Genetic , Female , Gene Conversion/genetics , Gene Conversion/physiology , Karyotyping , Male , Molecular Sequence Data , Pseudogenes/genetics , Sex Determination Analysis
8.
Cytogenet Genome Res ; 127(2-4): 213-23, 2009.
Article in English | MEDLINE | ID: mdl-20299781

ABSTRACT

Tuatara, Sphenodon punctatus, is the last survivor of the distinctive reptilian order Rhynchocephalia and is a species of extraordinary zoological interest, yet only recently have genomic analyses been undertaken. The karyotype consists of 28 macrochromosomes and 8 microchromosomes. A Bacterial Artificial Chromosome (BAC) library constructed for this species has allowed the first characterization of the tuatara genome. Sequence analysis of 11 fully sequenced BAC clones (approximately 0.03% coverage) increased the estimate of genome wide GC composition to 47.8%, the highest reported for any vertebrate. Our physical mapping data demonstrate discrete accumulation of repetitive elements in large blocks on some chromosomes, particularly the microchromosomes. We suggest that the large size of the genome (5.0 pg/haploid) is due to the accumulation of repetitive sequences. The microchromosomes of tuatara are rich in repetitive sequences, and the observation of one animal that lacked a microchromosome pair suggests that at least this microchromosome is unnecessary for survival. We used BACs bearing orthologues of known genes to construct a low-coverage cytogenetic map containing 21 markers. We identified a region on chromosome 4 of tuatara that shares homology with 7 Mb of chicken chromosome 2, and therefore the orthologous region of the snake Z chromosome. We identified a region on tuatara chromosome 3 that is orthologous to the chicken Z, and a region on chromosome 9 orthologous to the mammalian X. Since the tuatara determines sex by temperature and has no sex chromosomes, this implies that different tuatara autosome regions are homologous with the sex chromosomes of mammals, birds and snakes. We have identified anchor BAC clones that can be used to reliably mark chromosomes 3-7, 10 and 13, some of which are difficult to distinguish based on morphology alone. Fluorescence in situ hybridization mapping of 18S rDNA confirms the presence of a single NOR located on the long arm of chromosome 7, as previously identified by silver staining. Further work to construct a dense physical map will lead to a better understanding of the dynamics of genome evolution and organization in this isolated species.


Subject(s)
Chromosome Mapping , Chromosomes/genetics , Lizards/genetics , Animals , Base Composition/genetics , Chromosome Aberrations , Genomics , In Situ Hybridization, Fluorescence , Silver Staining , Telomere/genetics
9.
Cytogenet Genome Res ; 127(2-4): 249-60, 2009.
Article in English | MEDLINE | ID: mdl-20332599

ABSTRACT

Reptiles epitomize the variability of reproductive and sex determining modes and mechanisms among amniotes. These modes include gonochorism (separate sexes) and parthenogenesis, oviparity, viviparity, and ovoviviparity, genotypic sex determination (GSD) with male (XX/XY) and female (ZZ/ZW) heterogamety and temperature-dependent sex determination (TSD). Lizards (order Squamata, suborder Sauria) are particularly fascinating because the distribution of sex-determining mechanisms shows no clear phylogenetic segregation. This implies that there have been multiple transitions between TSD and GSD, and between XY and ZW sex chromosome systems. Approximately 1,000 species of lizards have been karyotyped and among those, fewer than 200 species have sex chromosomes, yet they display remarkable diversity in morphology and degree of degeneration. The high diversity of sex chromosomes as well as the presence of species with TSD, imply multiple and independent origins of sex chromosomes, and suggest that the mechanisms of sex determination are extremely labile in lizards. In this paper, we review the current state of knowledge of sex chromosomes in lizards and the distribution of sex determining mechanisms and sex chromosome forms within and among families. We establish for the first time an association between the occurrence of female heterogamety and TSD within lizard families, and propose mechanisms by which female heterogamety and TSD may have co-evolved. We suggest that lizard sex determination may be much more the result of an interplay between sex chromosomes and temperature than previously thought, such that the sex determination mode is influenced by the nature of heterogamety as well as temperature sensitivity and the stage of sex chromosome degeneration.


Subject(s)
Evolution, Molecular , Lizards/genetics , Reproduction/genetics , Sex Chromosomes/genetics , Sex Determination Processes , Animals , Female , Karyotyping , Male , Temperature
10.
Cytogenet Genome Res ; 117(1-4): 103-9, 2007.
Article in English | MEDLINE | ID: mdl-17675850

ABSTRACT

Birds have a ubiquitous, female heterogametic, ZW sex chromosome system. The current model suggests that the Z chromosome and its degraded partner, the W chromosome, evolved from an ancestral pair of autosomes independently from the mammalian XY male heteromorphic sex chromosomes--which are similar in size, but not gene content (Graves, 1995; Fridolfsson et al., 1998). Furthermore the degradation of the W has been proposed to be progressive, with the basal clade of birds (the ratites) possessing virtually homomorphic sex chromosomes and the more recently derived birds (the carinates) possessing highly heteromorphic sex chromosomes (Ohno, 1967; Solari, 1993). Recent findings have suggested an alternative to independent evolution of bird and mammal chromosomes, in which an XY system took over directly from an ancestral ZW system. Here we examine recent research into avian sex chromosomes and offer alternative suggestions as to their evolution.


Subject(s)
Birds/genetics , Evolution, Molecular , Sex Chromosomes/genetics , Animals , Female , Humans , Male , Mammals , Sex Determination Processes
11.
Cytogenet Genome Res ; 116(1-2): 132-4, 2007.
Article in English | MEDLINE | ID: mdl-17268192

ABSTRACT

There is much interest in the gene content of the small heterochromatic W chromosome of the chicken, on the supposition that it may contain sex-determining genes. A considerable region in the chicken genome has been assigned to the W chromosome on the basis of its repetitive sequences. Using fluorescent in situ hybridization (FISH) we localized five Bacterial Artificial Chromosomes (BACs) onto female chicken metaphase spreads. We physically mapped these BACs to the Z chromosome. The chicken genome database, however, assigned all five BACs to the W chromosome. Our results demonstrate that the 17 genes on these BACs are Z-specific, and points to the inadequacy of assigning regions of the genome based exclusively on repetitive sequences.


Subject(s)
Chromosomes , Animals , Chickens , Chromosome Mapping , Chromosomes, Artificial, Bacterial , DNA Primers/chemistry , Databases, Genetic , Female , Genome , In Situ Hybridization, Fluorescence , Nucleic Acid Hybridization , Physical Chromosome Mapping , Sex Chromosomes
SELECTION OF CITATIONS
SEARCH DETAIL
...