Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem A Mater ; 5(8): 4172-4182, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28580143

ABSTRACT

Nonstoichiometric metal oxides with variable valence are attractive redox materials for thermochemical and electrochemical fuel processing. To guide the design of advanced redox materials for solar-driven splitting of CO2 and/or H2O to produce CO and/or H2 (syngas), we investigate the equilibrium thermodynamics of the La x Sr1-x Mn y Al1-y O3-δ perovskite family (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) and La0.6Ca0.4Mn0.8Al0.2O3-δ , and compare them to those of CeO2 as the baseline. Oxygen nonstoichiometry measurements from 1573 to 1773 K and from 0.206 to 180 mbar O2 show a tunable reduction extent, increasing with increasing Sr content. Maximal nonstoichiometry of 0.32 is established with La0.2Sr0.8Mn0.8Al0.2O3-δ at 1773 K and 2.37 mbar O2. As a trend, we find that oxygen capacities are most sensitive to the A-cation composition. Partial molar enthalpy, entropy and Gibbs free energy changes for oxide reduction are extracted from the experimental data using defect models for Mn4+/Mn3+ and Mn3+/Mn2+ redox couples. We find that perovskites exhibit typically decreasing enthalpy changes with increasing nonstoichiometries. This desirable characteristic is most pronounced by La0.6Sr0.4Mn0.4Al0.6O3-δ , rendering it attractive for CO2 and H2O splitting. Generally, perovskites show lower enthalpy and entropy changes than ceria, resulting in more favorable reduction but less favorable oxidation equilibria. The energy penalties due to larger temperature swings and excess oxidants are discussed in particular. Using electronic structure theory, we conclude with a practical methodology estimating thermodynamic activity to rationally design perovskites with variable stoichiometry and valence.

2.
ChemSusChem ; 10(7): 1517-1525, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28124814

ABSTRACT

Perovskites are attractive candidates for the solar-driven thermochemical redox splitting of CO2 and H2 O into CO and H2 (syngas) and O2 . This work investigates the surface activity of La1-x Srx Mn1-y Aly O3-δ (0≤x≤1, 0≤y≤1) and La0.6 Ca0.4 Mn0.6 Al0.4 O3-δ . At 1623 K and 15 mbar O2 , the oxygen non-stoichiometry of La0.2 Sr0.8 Mn0.8 Al0.2 O3-δ increases with the strontium content and reaches a maximum of δ=0.351. X-ray photoelectron spectroscopy analysis indicates that manganese is the only redox-active metal at the surface. All La1-x Srx Mn1-y Aly O3-δ compositions exhibit surfaces enriched in manganese and depleted in strontium. We discuss how these compositional differences of the surface from the bulk lead to the beneficially higher reduction extents and lower strontium carbonate concentrations at the aluminum-doped surfaces. Using first principles calculations, we validate the experimental reduction trends and elucidate the mechanism of the partial electronic charge redistribution upon perovskite reduction.


Subject(s)
Aluminum/chemistry , Calcium Compounds/chemistry , Carbon Dioxide/chemistry , Lanthanum/chemistry , Manganese/chemistry , Oxides/chemistry , Strontium/chemistry , Titanium/chemistry , Water/chemistry , Carbonates/chemistry , Oxidation-Reduction , Oxygen/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...